Loading [Contrib]/a11y/accessibility-menu.js
ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Выбрано 23 задачи
Версия для печати
Убрать все задачи

Может ли развертка тетраэдра оказаться треугольником со сторонами 3, 4 и 5 (тетраэдр можно резать только по ребрам)?

Вниз   Решение


В пространстве проведены две параллельные прямые и пересекающие эти прямые две параллельные плоскости. Докажите, что четыре точки пересечения прямых и плоскостей служат вершинами параллелограмма.

ВверхВниз   Решение


Докажите, что две плоскости, параллельные третьей, параллельны между собой.

ВверхВниз   Решение


В квадратной песочнице, засыпанной ровным слоем песка высотой 1, Маша и Паша делали куличи при помощи цилиндрического ведёрка высоты 2. У Маши все куличи удались, а у Паши — рассыпались и превратились в конусы той же высоты. В итоге весь песок ушёл на куличи, поставленные на дне песочницы отдельно друг от друга. Чьих куличей оказалось в песочнице больше: Машиных или Пашиных?

ВверхВниз   Решение


Найдите геометрическое место середин всех отрезков, концы которых лежат в двух параллельных плоскостях.

ВверхВниз   Решение


Основанием пирамиды служит прямоугольный треугольник с острым углом . Каждое боковое ребро равно и наклонено к плоскости основания под углом . Найдите объём пирамиды.

ВверхВниз   Решение


Дана сфера радиуса 1 с центром в точке O . Из точки A , лежащей вне сферы, проведены четыре луча. Первый луч пересекает поверхность сферы последовательно в точках B1 и C1 , второй – в точках B2 и C2 , третий – в точках B3 и C3 , четвёртый – в точках B4 и C4 . Прямые B1B2 и C1C2 пересекаются в точке E , прямые B3B4 и C3C4 – в точке F . Найдите объём пирамиды OAEF , если AO=2 , EO=FO=3 , а угол между гранями AOE и AOF равен 30o .

ВверхВниз   Решение


Верно ли утверждение, что две прямые, перпендикулярные одной и той же прямой, параллельны?

ВверхВниз   Решение


Дана сфера радиуса 2 с центром в точке O . Из точки K , лежащей вне сферы, проведены четыре луча. Первый луч пересекает поверхность сферы последовательно в точках L1 И M1 , второй – в точках L2 и M2 , третий – в точках L3 и M3 , четвёртый – в точках L4 и M4 . Прямые L1L2 и M1M2 пересекаются в точке A , прямые L3L4 и M3M4 – в точке B . Найдите объём пирамиды KOAB , если KO=3 , AO=BO=4 , а угол между гранями KOA и KOB равен 60o .

ВверхВниз   Решение


Найдите объём правильной четырёхугольной пирамиды со стороной основания a и углом α бокового ребра с плоскостью основания.

ВверхВниз   Решение


Пусть проекция вершины A параллелепипеда ABCDA1B1C1D1 на некоторую плоскость лежит внутри проекции на эту плоскость треугольника A1BD . Докажите, что площадь проекции параллелепипеда в два раза больше площади проекции треугольника A1BD .

ВверхВниз   Решение


Найдите объём правильной четырёхугольной пирамиды с боковым ребром b и углом β боковой грани с плоскостью основания.

ВверхВниз   Решение


У выпуклого многогранника внутренний двугранный угол при каждом ребре острый. Сколько может быть граней у многогранника?

ВверхВниз   Решение


В параллелограмме ABCD на диагонали AC отмечена точка K . Окружность s1 проходит через точку K и касается прямых AB и AD , причём вторая точка пересечения s1 с диагональю AC лежит на отрезке AK . Окружность s2 проходит через точку K и касается прямых CB и CD , причём вторая точка пересечения s2 с диагональю AC лежит на отрезке KC . Докажите, что при всех положениях точки K на диагонали AC прямые, соединяющие центры окружностей s1 и s2 , будут параллельны между собой.

ВверхВниз   Решение


Докажите, что через точку, не лежащую на плоскости, можно провести единственную плоскость, параллельную данной.

ВверхВниз   Решение


Расстояния от концов отрезка до плоскости равны 1 и 3. Чему может быть равно расстояние от середины этого отрезка до той же плоскости?

ВверхВниз   Решение


Найдите объём правильной треугольной пирамиды с высотой h и углом α бокового ребра с плоскостью основания.

ВверхВниз   Решение


Угол наклона всех боковых граней пирамиды SABC к основанию одинаков и равен arctg . Основанием пирамиды является прямоугольный треугольник ABC ( ACB = 90o ); SO – высота пирамиды. Найдите боковую поверхность пирамиды, если OB = , а радиус вписанной в треугольник ABC окружности равен 1.

ВверхВниз   Решение


Пусть A , B , C и D – четыре точки, не лежащие в одной плоскости. Докажите, что плоскость, проходящая через середины отрезков AD , BD и CD , параллельна плоскости ABC .

ВверхВниз   Решение


В параллелепипеде ABCDA1B1C1D1 проведён отрезок, соединяющий вершину A с серединой ребра CC1 . В каком отношении этот отрезок делится плоскостью BDA1 ?

ВверхВниз   Решение


Докажите, что через любую из двух скрещивающихся прямых можно провести плоскость, параллельную другой прямой, и притом только одну.

ВверхВниз   Решение


Пусть A , B , C и D – четыре точки, не лежащие в одной плоскости. Докажите, что прямая AB параллельна плоскости, проходящей через середины отрезков AD , BD и CD .

ВверхВниз   Решение


Прямоугольный треугольник ABC является основанием пирамиды SABC , SO – высота пирамиды, C – вершина прямого угла треугольника ABC , OB = , COB = . Все боковые грани пирамиды одинаково наклонены к основанию пирамиды под углом, равным arctg . Найдите боковую поверхность пирамиды.

Вверх   Решение

Задачи

Страница: << 2 3 4 5 6 7 8 >> [Всего задач: 145]      



Задача 110434

Темы:   [ Площадь и ортогональная проекция ]
[ Углы между биссектрисами ]
[ Двугранный угол ]
Сложность: 3
Классы: 10,11

Прямоугольный треугольник ABC является основанием пирамиды SABC , SO – высота пирамиды, C – вершина прямого угла треугольника ABC , OB = , COB = . Все боковые грани пирамиды одинаково наклонены к основанию пирамиды под углом, равным arctg . Найдите боковую поверхность пирамиды.
Прислать комментарий     Решение


Задача 110740

Темы:   [ Площадь и ортогональная проекция ]
[ Двугранный угол ]
Сложность: 3
Классы: 10,11

Докажите, что площадь ортогональной проекции плоского многоугольника на плоскость равна площади проектируемого многоугольника, умноженной на косинус угла между плоскостью проекций и плоскостью проектируемого многоугольника.
Прислать комментарий     Решение


Задача 111123

Темы:   [ Ортогональное проектирование ]
[ Прямоугольные параллелепипеды ]
Сложность: 3
Классы: 10,11

Ортогональные проекции отрезка на три попарно перпендикулярные прямые равны 1, 2 и 3. Найдите длину этого отрезка.
Прислать комментарий     Решение


Задача 111137

Темы:   [ Параллельное проектирование ]
[ Параллелепипеды (прочее) ]
Сложность: 3
Классы: 10,11

Пусть проекция вершины A параллелепипеда ABCDA1B1C1D1 на некоторую плоскость лежит внутри проекции на эту плоскость треугольника A1BD . Докажите, что площадь проекции параллелепипеда в два раза больше площади проекции треугольника A1BD .
Прислать комментарий     Решение


Задача 104101

Темы:   [ Площадь и ортогональная проекция ]
[ Куб ]
[ Свойства сечений ]
[ Правильные многоугольники ]
Сложность: 3+
Классы: 10,11

В кубе АВСDА1В1С1D1 площадь ортогональной проекции грани АА1В1В на плоскость, перпендикулярную диагонали АС1, равна 1.
Найдите площадь ортогональной проекции куба на эту плоскость.

Прислать комментарий     Решение

Страница: << 2 3 4 5 6 7 8 >> [Всего задач: 145]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .