ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Выбрана 1 задача
Версия для печати
Убрать все задачи

Последовательность a1,a2,.. такова, что a1(1,2) и ak+1=ak+ при любом натуральном  k . Докажите, что в ней не может существовать более одной пары членов с целой суммой.

   Решение

Задачи

Страница: << 13 14 15 16 17 18 19 >> [Всего задач: 92]      



Задача 98421

Темы:   [ Замена переменных ]
[ Квадратный трехчлен (прочее) ]
[ Возрастание и убывание. Исследование функций ]
[ Разрывы функций ]
Сложность: 5-
Классы: 9,10

Дана функция    ,   где трёхчлены  x² + ax + b  и  x² + cx + d  не имеют общих корней. Докажите, что следующие два утверждения равносильны:
  1) найдётся числовой интервал, свободный от значений функции;
  2)  f(x) представима в виде:  f(x) = f1(f2(...fn–1(fn(x))...)),  где каждая из функций  fi(x) есть функция одного из видов:   kix + bi, x–1, x².

Прислать комментарий     Решение

Задача 109838

Темы:   [ Тригонометрические неравенства ]
[ Иррациональные неравенства ]
[ Возрастание и убывание. Исследование функций ]
[ Монотонность и ограниченность ]
Сложность: 5
Классы: 10,11

Докажите, что sin< при 0<x< .
Прислать комментарий     Решение


Задача 115397

Темы:   [ Рекуррентные соотношения (прочее) ]
[ Ограниченность, монотонность ]
[ Возрастание и убывание. Исследование функций ]
[ Индукция (прочее) ]
Сложность: 5
Классы: 10,11

Последовательность a1,a2,.. такова, что a1(1,2) и ak+1=ak+ при любом натуральном  k . Докажите, что в ней не может существовать более одной пары членов с целой суммой.
Прислать комментарий     Решение


Задача 109533

Темы:   [ Кубические многочлены ]
[ Теорема о промежуточном значении. Связность ]
[ Теория игр (прочее) ]
[ Производная и экстремумы ]
[ Многочлен нечетной степени имеет действительный корень ]
Сложность: 3+
Классы: 9,10,11

На доске написано:  x³ + ...x² + ...x + ... = 0.  Два школьника по очереди вписывают вместо многоточий действительные числа. Цель первого – получить уравнение, имеющее ровно один действительный корень. Сможет ли второй ему помешать?

Прислать комментарий     Решение

Задача 61034

Темы:   [ Симметрические многочлены ]
[ Кубические многочлены ]
[ Формулы сокращенного умножения (прочее) ]
[ Методы решения задач с параметром ]
[ Производная и экстремумы ]
Сложность: 4-
Классы: 9,10,11

Найдите все значения параметра a, при которых корни x1, x2, x3 многочлена  x3 – 6x2 + ax + a  удовлетворяют равенству
(x1 – 3)3 + (x2 – 3)3 + (x3 – 3)3 = 0.

Прислать комментарий     Решение

Страница: << 13 14 15 16 17 18 19 >> [Всего задач: 92]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .