ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Выбрана 1 задача
Версия для печати
Убрать все задачи

Кусок сыра имеет форму куба. В нем имеется несколько одинаковых непересекающихся сферических дыр. Докажите, что можно разрезать сыр на выпуклые многогранники так, чтобы внутри каждого из них находилась ровно одна дыра.

   Решение

Задачи

Страница: << 72 73 74 75 76 77 78 >> [Всего задач: 2393]      



Задача 111768

Темы:   [ Неравенства с объемами ]
[ Неравенства с площадями ]
[ Объем тетраэдра и пирамиды ]
[ Сфера, вписанная в тетраэдр ]
[ Объем параллелепипеда ]
[ Наименьшее или наибольшее расстояние (длина) ]
Сложность: 4+
Классы: 10,11

Назовем многогранник хорошим, если его объем (измеренный в м3 ) численно равен площади его поверхности (измеренной в м2 ). Можно ли какой-нибудь хороший тетраэдр разместить внутри какого-нибудь хорошего параллелепипеда?
Прислать комментарий     Решение


Задача 111924

Темы:   [ Цилиндр ]
[ Поверхность круглых тел ]
[ Неравенства с площадями ]
Сложность: 4+
Классы: 10,11

Моток ниток проткнули насквозь 72 цилиндрическими спицами радиуса 1 каждая, в результате чего он приобрел форму цилиндра радиуса 6. Могла ли высота этого цилиндра оказаться также равной 6?
Прислать комментарий     Решение


Задача 115388

Темы:   [ Наглядная геометрия в пространстве ]
[ Малые шевеления ]
Сложность: 4+
Классы: 8,9,10,11

Даны две картофелины произвольной формы и размера. Докажите, что по поверхности каждой из них можно проложить по проволочке так, что получатся два изогнутых колечка (не обязательно плоских), одинаковых по форме и размеру.
Прислать комментарий     Решение


Задача 35214

Тема:   [ Стереометрия (прочее) ]
Сложность: 4+
Классы: 10,11

На сфере радиуса 1 расположено n точек. Докажите, что сумма квадратов попарных расстояний между ними не больше n2.
Прислать комментарий     Решение


Задача 35220

Тема:   [ Стереометрия (прочее) ]
Сложность: 5-
Классы: 10,11

Кусок сыра имеет форму куба. В нем имеется несколько одинаковых непересекающихся сферических дыр. Докажите, что можно разрезать сыр на выпуклые многогранники так, чтобы внутри каждого из них находилась ровно одна дыра.
Прислать комментарий     Решение


Страница: << 72 73 74 75 76 77 78 >> [Всего задач: 2393]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .