Loading [Contrib]/a11y/accessibility-menu.js
ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Выбрано 17 задач
Версия для печати
Убрать все задачи

Две окружности касаются описанной окружности треугольника ABC в точке K; кроме того, одна из этих окружностей касается стороны AB в точке M, а другая касается стороны AC в точке N. Докажите, что центр вписанной окружности треугольника ABC лежит на прямой MN.

Вниз   Решение


Дано два тетраэдра A1A2A3A4 и B1B2B3B4. Рассмотрим шесть пар рёбер AiAj и BkBl, где  (i, j, k, l)  – перестановка чисел  (1, 2, 3, 4)  (например, A1A2 и B3B4). Известно, что во всех парах, кроме одной, рёбра перпендикулярны. Докажите, что в оставшейся паре рёбра тоже перпендикулярны.

ВверхВниз   Решение


На дуге CD описанной окружности квадрата ABCD взята точка P. Докажите, что  PA + PC = $ \sqrt{2}$PB.

ВверхВниз   Решение


Среди всех треугольников, вписанных в данную окружность, найдите тот, у которого максимальна сумма квадратов длин сторон.

ВверхВниз   Решение


Найдите геометрическое место точек, из которых данный отрезок виден под данным углом.

ВверхВниз   Решение


Площадь данного выпуклого четырёхугольника равна S. Найдите площадь четырёхугольника с вершинами в серединах сторон данного.

ВверхВниз   Решение


Дан набор из нескольких гирек, на каждой написана масса. Известно, что набор масс и набор надписей одинаковы, но возможно некоторые надписи перепутаны. Весы представляют из себя горизонтальный отрезок, закреплённый за середину. При взвешивании гирьки прикрепляются в произвольные точки отрезка, после чего весы остаются в равновесии либо отклоняются в ту или иную сторону. Всегда ли удастся за одно взвешивание проверить, все надписи верны или нет? (Весы будут в равновесии, если сумма моментов гирь справа от середины равна сумме моментов гирь слева; иначе отклонятся в сторону, где сумма больше. Моментом гири называется произведение ms массы гири m на расстояние s он нее до середины отрезка.)

ВверхВниз   Решение


Найдите предел последовательности, которая задана условиями

a1 = 2,        an + 1 = $\displaystyle {\dfrac{a_n}{2}}$ + $\displaystyle {\dfrac{a_n^2}{8}}$    (n $\displaystyle \geqslant$ 1).


ВверхВниз   Решение


Точка M внутри выпуклого четырехугольника ABCD такова, что площади треугольников ABM, BCM, CDM и DAM равны. Верно ли, что ABCD — параллелограмм, а точка M — точка пересечения его диагоналей?

ВверхВниз   Решение


Вписанная окружность касается сторон BC, CA и AB в точках A1, B1 и C1. Пусть Q — середина отрезка A1B1. Докажите, что $ \angle$B1C1C = $ \angle$QC1A1.

ВверхВниз   Решение


В тетраэдре ABCD все плоские углы при вершине A равны по 60o . Докажите, что AB + AC + AD BC + CD + DB .

ВверхВниз   Решение


Докажите, что сечением пирамиды ABCD плоскостью, параллельной рёбрам AC и BD , является параллелограмм, причём для одной такой плоскости этот параллелограмм будет ромбом. Найдите сторону этого ромба, если AC = a , BD = b .

ВверхВниз   Решение


В треугольнике известны две стороны a и b. Какой должна быть третья сторона, чтобы наибольший угол треугольника имел наименьшую величину?

ВверхВниз   Решение


В трапеции ABCD ( BC || AD ) известно, что AB = c и расстояние от середины отрезка CD до прямой AB равно d . Найдите площадь трапеции.

ВверхВниз   Решение


Основанием пирамиды SABC является правильный треугольник, сторона которого равна 1. Основанием высоты, опущенной из вершины S , является точка O , лежащая внутри треугольника ABC . Расстояние от точки O до стороны CA равно , а расстояние от O до AB относится к расстоянию от O до BC как 3:4 . Площадь грани SBC равна . Найдите объём пирамиды.

ВверхВниз   Решение


Автор: Нилов Ф.

Точки A', B', C' лежат на сторонах BC, CA, AB треугольника ABC. Точка X такова, что  ∠AXB = ∠A'C'B' + ∠ACB  и  ∠BXC = ∠B'A'C' + ∠BAC.
Докажите, что четырёхугольник XA'BC' – вписанный.

ВверхВниз   Решение


Пусть ABCD и A1B1C1D1 — два выпуклых четырёхугольника с соответственно равными сторонами. Докажите, что если $ \angle$A > $ \angle$A1, то $ \angle$B < $ \angle$B1, $ \angle$C > $ \angle$C1, $ \angle$D < $ \angle$D1.

Вверх   Решение

Задачи

Страница: << 1 2 3 4 >> [Всего задач: 16]      



Задача 55215

Темы:   [ Общие четырехугольники ]
[ Неравенства для элементов треугольника (прочее) ]
Сложность: 4
Классы: 8,9

Пусть ABCD и A1B1C1D1 — два выпуклых четырёхугольника с соответственно равными сторонами. Докажите, что если $ \angle$A > $ \angle$A1, то $ \angle$B < $ \angle$B1, $ \angle$C > $ \angle$C1, $ \angle$D < $ \angle$D1.

Прислать комментарий     Решение


Задача 64883

Темы:   [ Общие четырехугольники ]
[ Вписанные и описанные окружности ]
[ Три окружности пересекаются в одной точке ]
[ Поворот помогает решить задачу ]
[ ГМТ - окружность или дуга окружности ]
Сложность: 5-
Классы: 10,11

Автор: Белухов Н.

Дан четырёхугольник KLMN. Окружность с центром O пересекает его сторону KL в точках A и A1, сторону LM в точках B и B1, и т.д. Докажите что
  а) если описанные окружности треугольников KDA, LAB, MBC и NCD пересекаются в одной точке P, то описанные окружности треугольников KD1A1, LA1B1, MB1C1 и NC1D1 также пересекаются в одной точке Q;
  б) точка O лежит на серединном перпендикуляре к PQ.

Прислать комментарий     Решение

Задача 108686

Темы:   [ Отношение, в котором биссектриса делит сторону ]
[ Общие четырехугольники ]
Сложность: 3
Классы: 8,9

В выпуклом четырёхугольнике ABCD биссектрисы углов CAD и CBD пересекаются на стороне CD.
Докажите, что биссектрисы углов ACB и ADB пересекаются на стороне AB.

Прислать комментарий     Решение

Задача 109505

Темы:   [ Признаки и свойства равнобедренного треугольника. ]
[ Общие четырехугольники ]
[ Углы между биссектрисами ]
[ Векторы помогают решить задачу ]
[ Вспомогательная окружность ]
[ Средняя линия треугольника ]
[ Правильный (равносторонний) треугольник ]
[ Прямоугольный треугольник с углом в $30^\circ$ ]
[ Вписанный угол равен половине центрального ]
[ Вписанный угол, опирающийся на диаметр ]
Сложность: 5-
Классы: 8,9,10

В четырёхугольнике ABCD стороны AB, BC и CD равны, M – середина стороны AD. Известно, что  ∠BMC = 90°.
Найдите угол между диагоналями четырёхугольника ABCD.

Прислать комментарий     Решение

Задача 107674

Темы:   [ Признаки и свойства параллелограмма ]
[ Наименьший или наибольший угол ]
[ Общие четырехугольники ]
Сложность: 2+
Классы: 7,8,9

Из всякого ли выпуклого четырехугольника можно вырезать параллелограмм, три вершины которого совпадают с тремя вершинами этого четырехугольника?
Прислать комментарий     Решение


Страница: << 1 2 3 4 >> [Всего задач: 16]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .