Loading [Contrib]/a11y/accessibility-menu.js
ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Выбрано 24 задачи
Версия для печати
Убрать все задачи

Около трапеции KLMN описана окружность, причём основание KN является её диаметром. Известно, что KN = 4, LM = 2. Хорда MT пересекает диаметр KN в точке S, причём KS : SN = 1 : 3. Найдите площадь треугольника STN.

Вниз   Решение


В треугольнике ABC сторона AB больше стороны BC. Пусть A1 и B1 – середины сторон BC и AC, а B2 и C2 – точки касания вписанной окружности со сторонами AC и AB. Докажите, что отрезки A1B1 и B2C2 пересекаются в точке X, лежащей на биссектрисе угла B.

ВверхВниз   Решение


В треугольнике ABC точка M лежит на стороне AC, а точка L на стороне BC расположена так, что  BL : LC = 2 : 5.  Прямая, проходящая через точку L параллельно стороне AB, пересекает отрезок BM в точке O, причём  BO : OM = 7 : 4.  Найдите отношение, в котором точка M делит сторону AC.

ВверхВниз   Решение


На стороне AC треугольника ABC произвольно выбрана точка D. Касательная, проведённая в точке D к описанной окружности треугольника BDC, пересекает сторону AB в точке C1; аналогично определяется точка A1. Докажите, что  A1C1 || AC.

ВверхВниз   Решение


На стороне BC равностороннего треугольника ABC как на диаметре внешним образом построена полуокружность, на которой взяты точки K и L, делящие полуокружность на три равные дуги. Докажите, что прямые AK и AL делят отрезок BC на равные части.

ВверхВниз   Решение


Дан ромб со стороной a и острым углом α.
Найдите радиус окружности, проходящей через две соседние вершины ромба и касающейся противоположной стороны ромба или её продолжения.

ВверхВниз   Решение


На рисунке изображено, как изменялся курс тугрика в течение недели. У Пети было 30 рублей. В один из дней недели он обменял все свои рубли на тугрики. Потом он обменял все тугрики на рубли. Затем он ещё раз обменял все вырученные рубли на тугрики, и в конце концов, обменял все тугрики обратно на рубли. Напишите, в какие дни он совершал эти операции, если в воскресенье у него оказалось 54 рубля. (Достаточно привести пример.)

ВверхВниз   Решение


В пятиугольнике ABCDE углы ABC и AED – прямые,  AB = AE  и  BC = CD = DE.  Диагонали BD и CE пересекаются в точке F.
Докажите, что  FA = AB.

ВверхВниз   Решение


Автор: Mahdi Etesami Fard

Окружность $\omega$, вписанная в треугольник $ABC$, касается сторон $BC$, $CA$ и $AB$ в точках $D$, $E$ и $F$ соответственно. Перпендикуляр из $E$ на $DF$ пересекает прямую $BC$ в точке $X$, а перпендикуляр из $F$ на $DE$ пересекает $BC$ в точке $Y$. Отрезок $AD$ пересекает $\omega$ во второй раз в точке $Z$. Докажите, что описанная окружность треугольника $XYZ$ касается $\omega$.

ВверхВниз   Решение


Докажите равенство:

ctg 30o + ctg 75o = 2.


ВверхВниз   Решение


В треугольнике ABC угол C равен 30°, а угол A – острый. Перпендикулярно стороне BC проведена прямая, отсекающая от треугольника ABC треугольник CNM (точка N лежит между вершинами B и C). Площади треугольников CNM и ABC относятся, как  3 : 16.  Отрезок MN равен половине высоты BH треугольника ABC. Найдите отношение  AH : HC.

ВверхВниз   Решение


Автор: Белухов Н.

Вершины треугольника $DEF$ лежат на разных сторонах треугольника $ABC$. Касательные, проведенные из центра вписанной в треугольник $DEF$ окружности к вневписанным окружностям треугольника $ABC$, равны. Докажите, что $4S_{DEF} \ge S_{ABC}$.

ВверхВниз   Решение


В трапеции ABCD одно основание в два раза больше другого. Меньшее основание равно c. Диагонали трапеции пересекаются под прямым углом, а отношение боковых сторон равно k. Найдите боковые стороны трапеции.

ВверхВниз   Решение


В окружность радиуса 2$ \sqrt{7}$ вписана трапеция ABCD, причём её основание AD является диаметром, а угол BAD равен 60o. Хорда CE пересекает диаметр AD в точке P, причём AP : PD = 1 : 3. Найдите площадь треугольника BPE.

ВверхВниз   Решение


Дан угол с вершиной O и окружность, касающаяся его сторон в точках A и B. Из точки A параллельно OB проведён луч, пересекающий окружность в точке C. Прямая OC пересекает окружность в точке E. Прямые AE и OB пересекаются в точке K. Докажите, что  OK = KB.

ВверхВниз   Решение


Автор: Фольклор

На экране компьютера горит число, которое каждую минуту увеличивается на 102. Начальное значение числа 123. Программист Федя имеет возможность в любой момент изменять порядок цифр числа, находящегося на экране. Может ли он добиться того, чтобы число никогда не стало четырёхзначным?

ВверхВниз   Решение


Дан остроугольный треугольник ABC. С помощью циркуля и линейки постройте на его сторонах AB и BC соответственно точки X и Y, для которых
BX = XY = YC.

ВверхВниз   Решение


В окружность радиуса 17 вписан четырёхугольник, диагонали которого взаимно перпендикулярны и находятся на расстоянии 8 и 9 от центра окружности. Найдите стороны четырёхугольника.

ВверхВниз   Решение


В равнобедренной трапеции ABCD  AB = CD = 3,  основание  AD = 7,  ∠BAD = 60°.  На диагонали BD расположена точка M так, что  BM : MD = 3 : 5.
Какую из сторон трапеции: BC или CD пересекает продолжение отрезка AM?

ВверхВниз   Решение


Около окружности радиуса R описана трапеция. Хорда, соединяющая точки касания окружности с боковыми сторонами трапеции, равна a. Хорда параллельна основанию трапеции. Найдите площадь трапеции.

ВверхВниз   Решение


Вершины равнобедренного треугольника и центр его описанной окружности лежат на четырёх различных сторонах квадрата.
Найдите углы треугольника.

ВверхВниз   Решение


Докажите, что катет прямоугольного треугольника равен сумме радиуса вписанной окружности и радиуса вневписанной окружности, касающейся этого катета.

ВверхВниз   Решение


На землю положили квадратную раму, в центре квадрата установили вертикальный шест. Когда на эту конструкцию сверху натянули ткань, получилась маленькая палатка. Если положить рядом вплотную две таких же рамы, в центре каждой поставить вертикальный шест той же длины и натянуть сверху ткань, получится большая палатка. На маленькую палатку ушло 4 квадратных метра ткани. А сколько ткани потребуется для большой палатки?

ВверхВниз   Решение


Две окружности касаются в точке K. Прямая, проходящая через точку K, пересекает эти окружности в точках A и B. Докажите, что касательные к окружностям, проведенные через точки A и B, параллельны.

Вверх   Решение

Задачи

Страница: << 53 54 55 56 57 58 59 >> [Всего задач: 772]      



Задача 53985

Темы:   [ Угол между касательной и хордой ]
[ Признаки и свойства касательной ]
Сложность: 3
Классы: 8,9

Прямая касается окружности с центром O в точке A. Точка C на этой прямой и точка D на окружности расположены по одну сторону от прямой OA. Докажите, что угол CAD вдвое меньше угла AOD.

Прислать комментарий     Решение


Задача 54166

Темы:   [ Средняя линия трапеции ]
[ Признаки и свойства касательной ]
Сложность: 3
Классы: 8,9

Расстояния от концов диаметра окружности до некоторой касательной равны a и b. Найдите радиус окружности.

Прислать комментарий     Решение


Задача 55759

Темы:   [ Касающиеся окружности ]
[ Прямые, касающиеся окружностей (прочее) ]
[ Гомотетичные окружности ]
Сложность: 3
Классы: 8,9

Две окружности касаются в точке K. Прямая, проходящая через точку K, пересекает эти окружности в точках A и B. Докажите, что касательные к окружностям, проведенные через точки A и B, параллельны.

Прислать комментарий     Решение


Задача 35634

Темы:   [ Вписанные и описанные окружности ]
[ Две касательные, проведенные из одной точки ]
Сложность: 3
Классы: 8,9

От треугольника отрезали три треугольника, причём каждый из трёх разрезов коснулся вписанной в треугольник окружности. Известно, что периметры отрезанных треугольников равны P1, P2, P3. Найдите периметр исходного треугольника.

Прислать комментарий     Решение

Задача 52751

Темы:   [ Описанные четырехугольники ]
[ Общая касательная к двум окружностям ]
Сложность: 3
Классы: 8,9

В четырёхугольнике MNPQ расположены две непересекающиеся окружности так, что одна из них касается сторон MN, NP, PQ, а другая – сторон MN, MQ, PQ. Точки B и A лежат соответственно на сторонах MN и PQ, причём отрезок AB касается обеих окружностей. Найдите длину стороны MQ, если  NP = b  и периметр четырёхугольника BAQM больше периметра четырёхугольника ABNP на величину 2p.

Прислать комментарий     Решение

Страница: << 53 54 55 56 57 58 59 >> [Всего задач: 772]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .