Loading [Contrib]/a11y/accessibility-menu.js
ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Выбрано 24 задачи
Версия для печати
Убрать все задачи

В треугольнике ABC биссектриса угла A пересекает сторону BC в точке D; прямая, проведённая через точку D параллельно CA, пересекает сторону AB в точке E; прямая, проведённая через точку E параллельно BC, пересекает сторону AC в F. Докажите, что  EA = FC.

Вниз   Решение


Есть 20 карточек, у каждой из которых на двух сторонах написано по числу. При этом все числа от 1 до 20 написаны по два раза.
Доказать, что карточки можно разложить так, чтобы все числа сверху были различны.

ВверхВниз   Решение


В остроугольном треугольнике $ABC$ проведена биссектриса $AL$. На продолжении отрезка $LA$ за точку $A$ выбрана точка $K$ так, что $AK = AL$. Описанные окружности треугольников $BLK$ и $CLK$ пересекают отрезки $AC$ и $AB$ в точках $P$ и $Q$ соответственно. Докажите, что прямые $PQ$ и $BC$ параллельны.

ВверхВниз   Решение


Биссектриса угла параллелограмма делит сторону параллелограмма на отрезки, равные a и b. Найдите стороны параллелограмма.

ВверхВниз   Решение


Из точки A к окружности радиусом R проводится касательная AM (M — точка касания). Секущая, проходящая через точку A, пересекает окружность в точках K и L, причём L — середина отрезка AK, а угол AMK равен 60o. Найдите площадь треугольника AMK.

ВверхВниз   Решение


Два угла прямоугольного листа бумаги согнули так, как показано на рисунке. Противоположная сторона при этом оказалась разделённой на три равные части. Докажите, что закрашенный треугольник – равносторонний.

ВверхВниз   Решение


В треугольнике ABC взяли точку M так, что что радиусы описанных окружностей треугольников AMC, BMC и BMA не меньше радиуса описанной окружности треугольника ABC. Докажите, что все четыре радиуса равны.

ВверхВниз   Решение


Автор: Mahdi Etesami Fard

Окружность $\omega$, вписанная в треугольник $ABC$, касается сторон $BC$, $CA$ и $AB$ в точках $D$, $E$ и $F$ соответственно. Перпендикуляр из $E$ на $DF$ пересекает прямую $BC$ в точке $X$, а перпендикуляр из $F$ на $DE$ пересекает $BC$ в точке $Y$. Отрезок $AD$ пересекает $\omega$ во второй раз в точке $Z$. Докажите, что описанная окружность треугольника $XYZ$ касается $\omega$.

ВверхВниз   Решение


Пусть O — центр вписанной окружности треугольника ABC. Докажите, что  $ {\frac{OA^2}{bc}}$ + $ {\frac{OB^2}{ac}}$ + $ {\frac{OC^2}{ab}}$ = 1.

ВверхВниз   Решение


Две окружности радиусов r и R (r < R) касаются друг друга внешним образом. Прямая касается этих окружностей в точках M и N. В точках A и B окружности касаются внешним образом третьей окружности. Прямые AB и MN пересекаются в точке C. Из точки C проведена касательная к третьей окружности (D — точка касания). Найдите CD.

ВверхВниз   Решение


Автор: Креков Д.

Дан остроугольный треугольник ABC. Пусть A' – точка, симметричная A относительно BC, OA – центр окружности, проходящей через A и середины отрезков A'B и A'C. Точки OB и OC определяются аналогично. Найдите отношение радиусов описанных окружностей треугольников ABC и OAOBOC.

ВверхВниз   Решение


Равнобедренная трапеция с основаниями AD и BC ( AD > BC ) описана около окружности, которая касается стороны CD в точке M . Отрезок AM пересекает окружность в точке N . Найдите отношение AD к BC , если AN:NM = k .

ВверхВниз   Решение


На каждой стороне ромба находится по одной вершине квадрата, стороны которого параллельны диагоналям ромба.
Найдите сторону квадрата, если диагонали ромба равны 8 и 12.

ВверхВниз   Решение


Вписанная в треугольник $ABC$ окружность с центром $I$ касается его сторон $BC$, $CA$ и $AB$ в точках $A_1$, $B_1$ и $C_1$ соответственно. Вневписанная окружность с центром $J$ касается стороны $AC$ в точке $B_2$ и продолжений сторон $AB$ и $BC$ в точках $C_2$ и $A_2$ соответственно. Пусть прямые $IB_2$ и $JB_1$ пересекаются в точке $X$, прямые $IC_2$ и $JC_1$ – в точке $Y$, прямые $IA_2$ и $JA_1$ – в точке $Z$. Докажите, что если одна из точек $X$, $Y$, $Z$ лежит на вписанной окружности, то и две другие тоже.

ВверхВниз   Решение


В треугольнике ABC точка P — центр вписанной окружности, а точка Q — центр окружности, описанной около треугольника ABC. Прямая PQ перпендикулярна биссектрисе AP треугольника ABC. Известно, что величина угла PAQ равна $ \alpha$. Найдите углы треугольника.

ВверхВниз   Решение


В поселке 20 жительниц. 1 марта одна из них узнала интересную новость и сообщила её всем своим подругам. 2 марта те сообщили новость всем своим подругам, и так далее. Может ли так случиться, что:
  а) 15 марта ещё не все жительницы будут знать новость, а 18 марта уже все?
  б) 25 марта ещё не все жительницы будут знать новость, а 28 марта уже все?

ВверхВниз   Решение


Точки A и B высекают на окружности с центром O дугу величиной 60°. На этой дуге взята точка M.
Докажите, что прямая, проходящая через середины отрезков MA и OB, перпендикулярна прямой, проходящей через середины отрезков MB и OA.

ВверхВниз   Решение


Две окружности радиусов R и r пересекаются в точках A и B и касаются прямой в точках C и D; N — точка пересечения прямых AB и CD (B между A и N). Найдите:

1) радиус окружности, описанной около треугольника ACD;

2) отношение высот треугольников NAC и NAD, опущенных из вершины N.

ВверхВниз   Решение


Основанием пирамиды SABCD является трапеция ABCD с основаниями BC и AD , причём BC:AD = 2:5 . Диагонали трапеции пересекаются в точке E , а центр O вписанной в пирамиду сферы лежит на отрезке SE и делит его в отношении SO:OE = 7:2 . Найдите площадь полной поверхности пирамиды, если площадь боковой грани SBC равна 8.

ВверхВниз   Решение


Пусть O — центр окружности, описанной около треугольника ABC , AOC = 60o . Найдите угол AMC , где M — центр окружности, вписанной в треугольник ABC .

ВверхВниз   Решение


Из произвольной точки основания равнобедренного треугольника с боковой стороной, равной a, проведены прямые, параллельные боковым сторонам. Найдите периметр получившегося четырёхугольника.

ВверхВниз   Решение


Точка D лежит на стороне BC треугольника ABC. В треугольник ABD и ACD вписаны окружности с центрами O1 и O2. Докажите, что треугольник O1DO2 — прямоугольный.

ВверхВниз   Решение


Найдите все натуральные n и k, удовлетворяющие равенству  k5 + 5n4 = 81k.

ВверхВниз   Решение


Есть 99 палочек с длинами 1, 2, 3, ..., 99. Можно ли из них сложить контур какого-нибудь прямоугольника?

Вверх   Решение

Задачи

Страница: << 13 14 15 16 17 18 19 >> [Всего задач: 993]      



Задача 64564

Темы:   [ Прямоугольники и квадраты. Признаки и свойства ]
[ Медиана, проведенная к гипотенузе ]
[ Признаки и свойства равнобедренного треугольника. ]
[ Вписанный угол (прочее) ]
Сложность: 3
Классы: 8,9

В квадрате АВСD со стороной 1 точка F – середина стороны ВС, Е – основание перпендикуляра, опущенного из вершины А на DF.
Найдите длину ВЕ.

Прислать комментарий     Решение

Задача 64695

Темы:   [ Прямоугольники и квадраты. Признаки и свойства ]
[ Свойства симметрий и осей симметрии ]
[ Параллельные прямые, свойства и признаки. Секущие ]
[ Признаки и свойства равнобедренного треугольника. ]
Сложность: 3
Классы: 6,7

Два угла прямоугольного листа бумаги согнули так, как показано на рисунке. Противоположная сторона при этом оказалась разделённой на три равные части. Докажите, что закрашенный треугольник – равносторонний.

Прислать комментарий     Решение

Задача 64795

Темы:   [ Прямоугольники и квадраты. Признаки и свойства ]
[ Признаки и свойства равнобедренного треугольника. ]
[ Признаки равенства прямоугольных треугольников ]
Сложность: 3
Классы: 7,8

На сторонах BC и CD квадрата ABCD отмечены точки M и N соответственно так, что лучи AM и AN делят угол BAD на три равные части. ME – высота треугольника MAN. Найдите угол EDN.

Прислать комментарий     Решение

Задача 64823

Темы:   [ Ромбы. Признаки и свойства ]
[ Неравенство треугольника (прочее) ]
[ Примеры и контрпримеры. Конструкции ]
Сложность: 3
Классы: 8,9,10

Из четырёх палочек сложен контур параллелограмма. Обязательно ли из них можно сложить контур треугольника (одна из сторон треугольника складывается из двух палочек)?

Прислать комментарий     Решение

Задача 64837

Темы:   [ Прямоугольники и квадраты. Признаки и свойства ]
[ Разбиения на пары и группы; биекции ]
[ Примеры и контрпримеры. Конструкции ]
Сложность: 3
Классы: 7,8,9

Есть 99 палочек с длинами 1, 2, 3, ..., 99. Можно ли из них сложить контур какого-нибудь прямоугольника?

Прислать комментарий     Решение

Страница: << 13 14 15 16 17 18 19 >> [Всего задач: 993]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .