ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Подтемы:
Фильтр
Сложность с по   Класс с по  
Выбрана 1 задача
Версия для печати
Убрать все задачи

На свой день рождения Василиса купила треугольный пирог, который она разрезала по каждой биссектрисе и получилось 6 кусков. Опоздавшему Игорю достался кусок в форме прямоугольного треугольника, на основании чего он заявил, что пирог имел форму равнобедренного треугольника. Прав ли Игорь?

   Решение

Задачи

Страница: << 11 12 13 14 15 16 17 >> [Всего задач: 1435]      



Задача 64974

Темы:   [ Конкуррентность высот. Углы между высотами. ]
[ Касающиеся окружности ]
[ Угол между касательной и хордой ]
[ Углы, опирающиеся на равные дуги и равные хорды ]
[ Вписанный угол, опирающийся на диаметр ]
Сложность: 3
Классы: 9,10,11

Высоты AA1 и BB1 треугольника ABC пересекаются в точке H. Прямая CH пересекает полуокружность с диаметром AB, проходящую через точки A1 и B1, в точке D. Отрезки AD и BB1 пересекаются в точке M, BD и AA1 – в точке N. Докажите, что описанные окружности треугольников B1DM и A1DN касаются.

Прислать комментарий     Решение

Задача 65585

Темы:   [ Углы между биссектрисами ]
[ Признаки и свойства равнобедренного треугольника. ]
Сложность: 3
Классы: 7,8,9

На свой день рождения Василиса купила треугольный пирог, который она разрезала по каждой биссектрисе и получилось 6 кусков. Опоздавшему Игорю достался кусок в форме прямоугольного треугольника, на основании чего он заявил, что пирог имел форму равнобедренного треугольника. Прав ли Игорь?

Прислать комментарий     Решение

Задача 66668

Темы:   [ Углы между биссектрисами ]
[ Вписанные четырехугольники ]
[ Теорема синусов ]
Сложность: 3
Классы: 8,9

В треугольнике $ABC$ угол $A$ равен $60^{\circ}$, $AA'$, $BB'$, $CC'$ – биссектрисы. Докажите, что $\angle B'A'C'\leq 60^{\circ}$.
Прислать комментарий     Решение


Задача 66777

Темы:   [ Замечательные точки и линии в треугольнике (прочее) ]
[ Тангенсы и котангенсы углов треугольника ]
Сложность: 3
Классы: 8,9,10,11

В остроугольном треугольнике $ABC$ $A_M$ – середина стороны $BC$, $A_H$ – основание высоты, опущенной на эту сторону. Аналогично определяются точки $B_M$, $B_H$, $C_M$, $C_H$. Докажите, что одно из отношений $A_MA_H:A_HA$, $B_MB_H:B_HB$, $C_MC_H:C_HC$ равно сумме двух других.
Прислать комментарий     Решение


Задача 66794

Темы:   [ Средняя линия треугольника ]
[ Признаки и свойства равнобедренного треугольника. ]
Сложность: 3
Классы: 8,9,10,11

Автор: Рябов П.

Внутри треугольника $ABC$ взята такая точка $M$, что $AM = \frac{1}{2} AB$, а $CM = \frac{1}{2} BC$. Точки $C_0$ и $A_0$ взяты на отрезках $AB$ и $CB$ соответственно, причем $BC_0 : AC_0 = BA_0 : CA_0 = 3$. Докажите, что $M$ равноудалена от $C_0$ и $A_0$.
Прислать комментарий     Решение


Страница: << 11 12 13 14 15 16 17 >> [Всего задач: 1435]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .