Loading [Contrib]/a11y/accessibility-menu.js
ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Выбрано 24 задачи
Версия для печати
Убрать все задачи

Три гнома живут в разных домах на плоскости и ходят со скоростями 1, 2 и 3 км/ч соответственно. Какое место для ежедневных встреч нужно им выбрать, чтобы сумма времён, необходимых каждому из гномов на путь от своего дома до этого места (по прямой), была наименьшей?

Вниз   Решение


Доказать, что число штатов США с нечётным числом соседей чётно.

ВверхВниз   Решение


На катете BC прямоугольного треугольника ABC как на диаметре построена окружность, пересекающая гипотенузу в точке D так, что AD : DB = 1 : 4. Найдите высоту, опущенную из вершины C прямого угла на гипотенузу, если известно, что катет BC равен 10.

ВверхВниз   Решение


Было семь ящиков. В некоторые из них положили еще по семь ящиков (не вложенных друг в друга) и т. д. В итоге стало 10 непустых ящиков.
Сколько всего стало ящиков?

ВверхВниз   Решение


Хорда окружности пересекает некоторый диаметр под углом, равным 30°, и делит его на отрезки, равные a и b. Найдите расстояние от центра окружности до этой хорды.

ВверхВниз   Решение


У треугольника известны стороны  a = 2,  b = 3  и площадь  S = .  Медиана, проведённая к его третьей стороне, меньше её половины.
Найдите радиус описанной окружности этого треугольника .

ВверхВниз   Решение


Угол при вершине равнобедренного треугольника равен 40o. Одна из боковых сторон служит диаметром полуокружности, которая делится другими сторонами на три части. Найдите эти части.

ВверхВниз   Решение


Окружность с центром, расположенным внутри прямого угла, касается одной стороны угла, пересекает другую сторону в точках A и B и биссектрису угла в точках C и DAB = CD = .  Найдите радиус окружности.

ВверхВниз   Решение


В треугольнике ABC проведены высоты AA1, BB1 и CC1. Пусть  A1A2, B1B2 и C1C2 — диаметры окружности девяти точек треугольника ABC. Докажите, что прямые AA2, BB2 и CC2 пересекаются в одной точке (или параллельны).

ВверхВниз   Решение


В остроугольном неравнобедренном треугольнике ABC высоты CC1 и BB1 пересекают прямую, проходящую через вершину A и параллельную прямой BC, в точках P и Q. Пусть A0 – середина стороны BC, а AA1 – высота. Прямые A0C1 и A0B1 пересекают прямую PQ в точках K и L. Докажите, что описанные окружности треугольников PQA1, KLA0, A1B1C1 и окружность с диаметром AA1 пересекаются в одной точке.

ВверхВниз   Решение


Таня последовательно выписывала числа вида ${n^7-1}$ для натуральных чисел $n=2,3,\ldots$ и заметила, что при $n=8$ полученное число делится на 337. А при каком наименьшем $n\gt 1$ она получит число, делящееся на 2022?

ВверхВниз   Решение


Докажите, что прямая, проходящая через точки пересечения двух окружностей, делит пополам общую касательную к ним.

ВверхВниз   Решение


Решить в целых числах уравнение  x + y = x² – xy + y².

ВверхВниз   Решение


Прямая, проходящая через вершину B треугольника ABC, пересекает сторону AC в точке K, а описанную окружность в точке M.
Найдите геометрическое место центров описанных окружностей треугольников AMK.

ВверхВниз   Решение


Существуют ли 11 последовательных натуральных чисел, сумма которых равна точному кубу?

ВверхВниз   Решение


Автор: Нилов Ф.

Вписанная окружность треугольника ABC касается его сторон в точках A', B' и C'. Известно, что ортоцентры треугольников ABC и A'B'C' совпадают. Верно ли, что треугольник ABC – правильный?

ВверхВниз   Решение


С помощью циркуля и линейки постройте параллелограмм по отношению диагоналей, углу между диагоналями и стороне.

ВверхВниз   Решение


Сколько в выпуклом многоугольнике может быть сторон, равных по длине наибольшей диагонали?

ВверхВниз   Решение


На продолжении хорды KL окружности с центром O взята точка A, и из неё проведены касательные AP и AQ (P и Q – точки касания); M – середина отрезка PQ. Докажите, что  ∠MKO = ∠MLO.

ВверхВниз   Решение


Может ли выпуклый неправильный пятиугольник иметь ровно четыре стороны одинаковой длины и ровно четыре диагонали одинаковой длины?
Может ли в таком пятиугольнике пятая сторона иметь общую точку с пятой диагональю?

ВверхВниз   Решение


а) Окружности S1 и S2 пересекаются в точках A и B. Степень точки P окружности S1 относительно окружности S2 равна p, расстояние от точки P до прямой AB равно h, а расстояние между центрами окружностей равно d. Докажите, что | p| = 2dh.
б) Степени точек A и B относительно описанных окружностей треугольников BCD и ACD равны pa и pb. Докажите, что  | pa| SBCD = | pb| SACD.

ВверхВниз   Решение


Через точку P, лежащую на общей хорде двух пересекающихся окружностей, проведены хорда KM первой окружности и хорда LN второй окружности.
Докажите, что четырёхугольник KLMN вписанный.

ВверхВниз   Решение


На листе прозрачной бумаги нарисован четырёхугольник. Укажите способ, как сложить этот лист (возможно, в несколько раз), чтобы определить, является ли исходный четырёхугольник ромбом.

ВверхВниз   Решение


Внутри параллелограмма ABCD отмечена точка K. Точка M – середина BC, точка P – середина KM. Докажите, что если ∠APB = ∠CPD = 90°, то AK = DK.

Вверх   Решение

Задачи

Страница: << 14 15 16 17 18 19 20 >> [Всего задач: 993]      



Задача 64935

Темы:   [ Прямоугольники и квадраты. Признаки и свойства ]
[ Текстовые задачи (прочее) ]
Сложность: 3
Классы: 5,6

Рамка для трёх квадратных фотографий имеет везде одинаковую ширину (см. рисунок). Периметр одного отверстия равен 60 см, периметр всей рамки равен 180 см. Чему равна ширина рамки?

Прислать комментарий     Решение

Задача 65187

Темы:   [ Признаки и свойства параллелограмма ]
[ Средняя линия треугольника ]
[ Признаки и свойства равнобедренного треугольника. ]
Сложность: 3
Классы: 8,9

Внутри параллелограмма ABCD отметили точку E так, что  CD = CE.
Докажите, что прямая DE перпендикулярна прямой, проходящей через середины отрезков AE и BC.

Прислать комментарий     Решение

Задача 65946

Темы:   [ Ромбы. Признаки и свойства ]
[ Разрезания на части, обладающие специальными свойствами ]
Сложность: 3
Классы: 8,9

Можно ли произвольный ромб разрезать не более, чем на две части так, чтобы из этих частей сложить прямоугольник?

Прислать комментарий     Решение

Задача 66402

Темы:   [ Параллелограммы: частные случаи (прочее) ]
[ Средняя линия трапеции ]
Сложность: 3
Классы: 8,9

Автор: Фольклор

Два параллелограмма расположены так, как показано на рисунке. Докажите, что диагональ одного параллелограмма проходит через точку пересечения диагоналей другого.

Прислать комментарий     Решение

Задача 66468

Тема:   [ Параллелограммы (прочее) ]
Сложность: 3
Классы: 8,9,10,11

Внутри параллелограмма ABCD отмечена точка K. Точка M – середина BC, точка P – середина KM. Докажите, что если ∠APB = ∠CPD = 90°, то AK = DK.
Прислать комментарий     Решение


Страница: << 14 15 16 17 18 19 20 >> [Всего задач: 993]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .