Loading [Contrib]/a11y/accessibility-menu.js
ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Выбрано 16 задач
Версия для печати
Убрать все задачи

В треугольнике ABC, площадь которого равна 1, на медиане BK взята точка M, причём  MK = ¼ BK.  Прямая AM пересекает сторону BC в точке L.
Найдите площадь треугольника ALC.

Вниз   Решение


Основанием наклонного параллелепипеда служит ромб, сторона которого равна 60. Плоскость диагонального сечения, проходящая через большую диагональ основания, перпендикулярна плоскости основания. Площадь этого сечения равна 7200. Найдите меньшую диагональ основания, если боковое ребро равно 80 и образует с плоскостью основания угол 60o .

ВверхВниз   Решение


Многоугольник, описанный около окружности радиуса r, разрезан на треугольники (произвольным образом). Докажите, что сумма радиусов вписанных окружностей этих треугольников больше r.

ВверхВниз   Решение


Длины сторон треугольника образуют арифметическую прогрессию. Докажите, что радиус вписанной окружности равен трети одной из высот треугольника.

ВверхВниз   Решение


Через точку M, лежащую внутри параллелограмма ABCD, проведены прямые PR и QS, параллельные сторонам BC и AB (точки P, Q, R и S лежат на сторонах AB, BC, CD и DA соответственно). Докажите, что прямые BS, PD и MC пересекаются в одной точке.

ВверхВниз   Решение


Автор: Уткин А.

В треугольнике $ABC$ $I$ – центр вписанной окружности, вневписанная окружность с центром $I_A$ касается стороны $BC$ в точке $A'$. Через $I$ проведена прямая $l\perp BI$. Оказалось, что $l$ пересекает $I_AA'$ в точке $K$, лежащей на средней линии, параллельной $BC$. Докажите, что $\angle B\leq 60^{\circ}$.

ВверхВниз   Решение


Доказать, что квадрат любого простого числа  p > 3  при делении на 12 даёт в остатке 1.

ВверхВниз   Решение


Доказать, что многочлен с целыми коэффициентами  a0xn + a1xn–1 + ... + an–1x + an,  принимающий при  x = 0  и  x = 1  нечётные значения, не имеет целых корней.

ВверхВниз   Решение


Докажите, что из всех хорд, проходящих через точку A, взятую внутри круга и отличную от центра, наименьшей будет та, которая перпендикулярна диаметру, проходящему через точку A.

ВверхВниз   Решение


Решить уравнение:

| x + 1| - | x| + 3| x - 1| - 2| x - 2| = x + 2.

ВверхВниз   Решение


Решить в натуральных числах уравнение  x2y–1 + (x + 1)2y–1 = (x + 2)2y–1.

ВверхВниз   Решение


У первоклассника имеется сто карточек, на которых написаны натуральные числа от 1 до 100, а также большой запас знаков "+" и "=". Какое наибольшее число верных равенств он может составить? (Каждая карточка используется не более одного раза, в каждом равенстве может быть только один знак "=", переворачивать карточки и прикладывать их для получения новых чисел нельзя.)

ВверхВниз   Решение


На гипотенузе $AB$ прямоугольного треугольника $ABC$ отметили точку $K$, а на катете $AC$ – точку $L$ так, что  $AK = AC,  BK = LC$.  Отрезки $BL$ и $CK$ пересекаются в точке $M$. Докажите, что треугольник $CLM$ равнобедренный.

ВверхВниз   Решение


В параллелограмм P1 вписан параллелограмм P2, а в параллелограмм P2 вписан параллелограмм P3, стороны которого параллельны сторонам P1. Докажите, что длина хотя бы одной из сторон P1 не превосходит удвоенной длины параллельной ей стороны P3.

ВверхВниз   Решение


Докажите, что если никакие стороны четырехугольника не параллельны, то середина отрезка, соединяющего точки пересечения противоположных сторон, лежит на прямой, соединяющей середины диагоналей (прямая Гаусса).

ВверхВниз   Решение


Проведены две параллельные плоскости по одну сторону от центра шара на расстоянии 3 друг от друга. Эти плоскости дают в сечении два малых круга, радиусы которых соответственно равны 9 и 12. Найдите объём шара.

Вверх   Решение

Задачи

Страница: << 143 144 145 146 147 148 149 >> [Всего задач: 2399]      



Задача 87455

Темы:   [ Конус ]
[ Поверхность круглых тел ]
Сложность: 3
Классы: 10,11

Металлический шар радиуса , перелит в конус, боковая поверхность которого в три раза больше площади основания. Найдите высоту конуса.
Прислать комментарий     Решение


Задача 87457

Темы:   [ Сферы (прочее) ]
[ Объем шара, сегмента и проч. ]
Сложность: 3
Классы: 10,11

Проведены две параллельные плоскости по одну сторону от центра шара на расстоянии 3 друг от друга. Эти плоскости дают в сечении два малых круга, радиусы которых соответственно равны 9 и 12. Найдите объём шара.
Прислать комментарий     Решение


Задача 87458

Темы:   [ Параллелепипеды (прочее) ]
[ Площадь сечения ]
Сложность: 3
Классы: 10,11

Основанием наклонного параллелепипеда служит ромб, сторона которого равна 60. Плоскость диагонального сечения, проходящая через большую диагональ основания, перпендикулярна плоскости основания. Площадь этого сечения равна 7200. Найдите меньшую диагональ основания, если боковое ребро равно 80 и образует с плоскостью основания угол 60o .
Прислать комментарий     Решение


Задача 87469

Темы:   [ Правильная пирамида ]
[ Двугранный угол ]
Сложность: 3
Классы: 10,11

Тангенсы двугранных углов при основании правильной треугольной пирамиды равны 3. Найдите длину отрезка, соединяющего середину стороны основания с серединой противоположного ребра, если сторона основания пирамиды равна .
Прислать комментарий     Решение


Задача 87470

Темы:   [ Куб ]
[ Свойства сечений ]
[ Расстояние от точки до плоскости ]
Сложность: 3
Классы: 10,11

Дан куб ABCDA1B1C1D1 с ребром a . Пусть M – середина ребра D1C1 . Найдите периметр треугольника A1DM , а также расстояние от вершины D1 до плоскости, проходящей через вершины этого треугольника.
Прислать комментарий     Решение


Страница: << 143 144 145 146 147 148 149 >> [Всего задач: 2399]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .