ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Задачи

Страница: << 5 6 7 8 9 10 11 >> [Всего задач: 52]      



Задача 110782

Темы:   [ Свойства разверток ]
[ Прямоугольные треугольники (прочее) ]
[ Неравенства с трехгранными углами ]
[ Частные случаи тетраэдров (прочее) ]
Сложность: 4
Классы: 9,10,11

Может ли развертка тетраэдра оказаться треугольником со сторонами 3, 4 и 5 (тетраэдр можно резать только по ребрам)?
Прислать комментарий     Решение


Задача 79298

Темы:   [ Сфера, касающаяся ребер угла ]
[ Примеры и контрпримеры. Конструкции ]
[ Трехгранные и многогранные углы (прочее) ]
Сложность: 4+
Классы: 9,10,11

Можно ли разместить в пространстве четыре свинцовых шара и точечный источник света так, чтобы каждый исходящий из источника света луч пересекал хотя бы один из шаров?
Прислать комментарий     Решение


Задача 116203

Темы:   [ Примеры и контрпримеры. Конструкции ]
[ Тетраэдр (прочее) ]
[ Неравенство треугольника (прочее) ]
[ Трехгранные и многогранные углы (прочее) ]
[ Теорема косинусов ]
Сложность: 3
Классы: 10,11

Шесть отрезков таковы, что из любых трех можно составить треугольник. Bерно ли, что из этих отрезков можно составить тетраэдр?

Прислать комментарий     Решение

Задача 79564

Темы:   [ Сфера, вписанная в тетраэдр ]
[ Касательные к сферам ]
[ Вспомогательная раскраска (прочее) ]
[ Многогранные углы ]
Сложность: 5+
Классы: 10,11

На рёбрах произвольного тетраэдра выбрано по точке. Через каждую тройку точек, лежащих на рёбрах с общей вершиной, проведена плоскость. Докажите, что если три из четырёх проведённых плоскостей касаются вписанного в тетраэдр шара, то и четвёртая плоскость также его касается.
Прислать комментарий     Решение


Задача 116774

Темы:   [ Пирамида (прочее) ]
[ Свойства разверток ]
[ Касательные к сферам ]
[ Соображения непрерывности ]
[ Неравенства с трехгранными углами ]
[ Доказательство от противного ]
Сложность: 4+
Классы: 10,11

Автор: Пак И.

Дана пирамида SA1A2...An, основание которой – выпуклый многоугольник A1A2...An. Для каждого  i = 1, 2, ..., n  в плоскости основания построили треугольник XiAiAi+1, равный треугольнику SAiAi+1 и лежащий по ту же сторону от прямой AiAi+1, что и основание (мы полагаем  An+1 = A1).  Докажите, что построенные треугольники покрывают всё основание.

Прислать комментарий     Решение

Страница: << 5 6 7 8 9 10 11 >> [Всего задач: 52]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .