Loading [Contrib]/a11y/accessibility-menu.js
ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Выбрано 19 задач
Версия для печати
Убрать все задачи

В равнобедренной трапеции проведена диагональ. По контуру каждого из получившихся двух треугольников ползёт свой жук. Скорости движения жуков постоянны и одинаковы. Жуки не меняют направления обхода своих контуров, и по диагонали трапеции они ползут в разных направлениях. Докажите, что при любых начальных положениях жуков они когда-нибудь встретятся.

Вниз   Решение


Уравнение  x² + px + q = 0  имеет корни x1 и x2. Напишите уравнение, корнями которого будут числа y1, y2 равные:

а)       б)       в)       г)  

ВверхВниз   Решение


Касательная в точке A к описанной окружности треугольника ABC пересекает прямую BC в точке E;AD - биссектриса треугольника ABC. Докажите, что AE = ED.

ВверхВниз   Решение


Две окружности радиусов r и R с центрами в точках O1 и O касаются внутренним образом в точке K. В точке A окружности радиуса r проведена касательная, пересекающая окружность радиуса R в точках B и C. Известно, что AC : AB = p и отрезок AC пересекает отрезок OK. Определите:

а) при каких условиях на r, R и p возможна такая геометрическая конфигурация;

б) длину отрезка BC.

ВверхВниз   Решение


По мнению Тани, в идеальном кофейном напитке должно быть ровно в 9 раз больше кофе, чем молока. У Глеба есть стакан и кружка, а также целая цистерна молока и огромная турка с неограниченным запасом кофе. Аккуратный Глеб может отпить ровно половину содержимого кружки или стакана. Как Глебу приготовить для Тани целый стакан идеального кофейного напитка, если точный объём кружки неизвестен, но он как минимум на $10\%$ больше объёма стакана? Глеб может наливать кофе и молоко в стакан или в кружку, может выливать содержимое, переливать из кружки в стакан или наоборот, отпивать половину содержимого любое конечное количество раз.

ВверхВниз   Решение


Периметр прямоугольника равен 40. Какой из таких прямоугольников имеет наибольшую площадь?

ВверхВниз   Решение


Окружности $s_1$ и $s_2$ пересекаются в точках $A$ и $B$. Через точку $A$ проводятся всевозможные прямые, вторично пересекающие окружности в точках $P_1$ и $P_2$. Постройте циркулем и линейкой ту прямую, для которой $P_1A\cdot AP_2$ принимает наибольшее значение.

ВверхВниз   Решение


Дан треугольник $ABC$. Прямая $AB$ касается его вписанной окружности в точке $C'$, а вневписанной, касающейся стороны $BC$, – в точке $C'_a$. Аналогично определяются точки $C'_b$, $C'_c$, $A'$, $A'_a$, $A'_b$, $A'_c$, $B'$, $B'_a$, $B'_b$, $B'_c$. Рассмотрим длины 12 отрезков – высот треугольников $A'B'C'$, $A'_aB'_aC'_a$, $A'_bB'_bC'_b$, $A'_cB'_cC'_c$.

а) Какое наибольшее число различных может быть среди них?

б) Найдите все возможные количества различных длин.

ВверхВниз   Решение


В квадрате отметили 20 точек и соединили их непересекающимися отрезками друг с другом и с вершинами квадрата так, что квадрат разбился на треугольники. Сколько получилось треугольников?

ВверхВниз   Решение


Какое наибольшее число острых углов может иметь выпуклый многоугольник?

ВверхВниз   Решение


Даны три точки, не лежащие на одной прямой. Через каждые две из них провести окружность так, чтобы три проведённые окружности имели в точках пересечения взаимно перпендикулярные касательные.

ВверхВниз   Решение


Докажите, что медиана треугольника ABC, проведённая из вершины A, меньше полусуммы сторон AB и AC.

ВверхВниз   Решение


Найдите число нулей, на которое оканчивается число  11100 – 1.

ВверхВниз   Решение


Параллельные стороны трапеции равны 25 и 4, а непараллельные – 20 и 13. Найдите высоту трапеции.

ВверхВниз   Решение


Дана тригармоническая четвёрка точек A, B, C и D (то есть  AB·CD = AC·BD = AD·BC).  Пусть A1 – такая отличная от A точка, что четвёрка точек A1, B, C и D тригармоническая. Точки B1, C1 и D1 определяются аналогично. Докажите, что
  a) A, B, C1, D1 лежат на одной окружности;
  б) точки A1, B1, C1, D1 образуют тригармоническую четвёрку.

ВверхВниз   Решение


Каждая из шести окружностей касается четырех из оставшихся пяти (рис.). Докажите, что для любой пары несоприкасающихся окружностей (из этих шести) их радиусы и расстояние между центрами связаны соотношением d2 = r12 + r22±6r1r2 (к плюск — если окружности не лежат одна внутри другой, к минуск — в противном случае).


ВверхВниз   Решение


Может ли квадрат какого-либо натурального числа начинаться с 1983 девяток?

ВверхВниз   Решение


Треугольник ABC вписан в окружность с центром O. Точки D и E диаметрально противоположны вершинам A и B соответственно. Хорда DF параллельна стороне BC. Прямая EF пересекает сторону AC в точке G, а сторону BC – в точке H. Докажите, что  OG || BC  и  EG = GH = GC.

ВверхВниз   Решение


У Пети есть колода из 36 карт (4 масти по 9 карт в каждой). Он выбирает из неё половину карт (какие хочет) и отдаёт Васе, а вторую половину оставляет себе. Далее каждым ходом игроки по очереди выкладывают на стол по одной карте (по своему выбору, в открытом виде); начинает Петя. Если в ответ на ход Пети Вася смог выложить карту той же масти или того же достоинства, Вася зарабатывает
1 очко. Какое наибольшее количество очков он может гарантированно заработать?

Вверх   Решение

Задача 66856
Темы:    [ Теория игр (прочее) ]
[ Вспомогательная раскраска (прочее) ]
[ Теория графов (прочее) ]
[ Числовые таблицы и их свойства ]
[ Оценка + пример ]
Сложность: 4
Классы: 8,9,10,11
Из корзины
Прислать комментарий

Условие

У Пети есть колода из 36 карт (4 масти по 9 карт в каждой). Он выбирает из неё половину карт (какие хочет) и отдаёт Васе, а вторую половину оставляет себе. Далее каждым ходом игроки по очереди выкладывают на стол по одной карте (по своему выбору, в открытом виде); начинает Петя. Если в ответ на ход Пети Вася смог выложить карту той же масти или того же достоинства, Вася зарабатывает
1 очко. Какое наибольшее количество очков он может гарантированно заработать?


Решение 1

  Если Петя возьмёт себе все черви, все тузы, короли и дамы, то Вася не сможет набрать очки на тузе, короле и даме червей, т.е. наберёт не больше 15 очков.
  Переформулируем задачу. Рассмотрим доску 4×9. Петя закрашивает чёрным 18 клеток. Докажем, что Вася сможет выделить не менее 15 непересекающихся хороших пар: в каждой паре две клетки разного цвета, находящиеся в одной строке или одном столбце.
  Назовём весом столбца количество чёрных клеток в нём. Сначала Вася рассматривает столбцы типа 2 (если они есть). Каждый из них, очевидно, разбивается на две хорошие пары.
  Далее Вася рассматривает пары столбцов типа 0 и 4. Каждая такая пара, очевидно, разбивается на четыре хорошие пары клеток.
  Далее Вася рассматривает пары столбцов типа 1 и 3 (см. рисунки). Каждая такая пара тоже разбивается на четыре хорошие пары клеток (см. рисунки).

         

  Когда указанные пары столбцов закончатся, в силу симметрии можно считать, что "необработанными" останутся только столбцы типов 4 и 1. Если это $a$ столбцов типа 4 и $b$ столбцов типа 1, то  $4a + b = 3b$,  то есть  $b = 2a$.  В тройке из столбца типа 4 и двух столбцов типа 1 Вася сможет выделить не менее пяти хороших пар клеток (см. рисунки).

         

  Так как  $3a = a + b \leqslant 9$,  то на всей доске останется не более трёх нехороших пар, т.е. Вася "потеряет" не больше 3 очков.


Решение 2

  Воспользуемся известной леммой Холла о сватовстве (см. решение задачи 98160).
  В терминах решения 1 объявим чёрные клетки юношами, белые – девушками, а знакомыми – клетки, находящиеся в одном ряду. Докажем, что для каждой группы из $k$ юношей  ($k$ = 1, 2, ..., 18) имеется по крайней мере  $k - 3$  девушки, имеющих знакомых среди этой группы юношей. Добавив трёх виртуальных девушек, знакомых со всеми юношами, мы окажемся в условиях леммы Холла. Переженив всех юношей и отбросив не более чем троих, которым достались виртуальные девушки, получим не менее 15 хороших пар.
  Пусть есть группа $X$ из $k$ юношей (чёрных клеток). Переставим столбцы, их содержащие, влево, а строки – вниз. Пересечение этих строк и столбцов – прямоугольник площади $S_{1}$ – содержит $X$,
а дополнение к их объединению – прямоугольник площади $S_{2}$ – содержит всех незнакомых с ними девушек. Значит,  $k \leqslant \min(S_{1}, 18)$,  а количество знакомых с ними девушек не меньше  $18 - \min (S_{2}, 18)$.  Достаточно доказать, что  $18 - \min(S_{2}, 18) \geqslant \min(S_{1}, 18) - 3$,  т.е. что  $\min(S_{1}, 18) + \min(S_{2}, 18)$ ≤ 21.
  Выражение  $F = \min(S_{1}, 18) + \min(S_{2}, 18)$  симметрично, поэтому достаточно рассмотреть случай, когда общая вершина $A$ построенных прямоугольников лежит в верхней половине доски. Тогда  $S_{2} \leqslant 18$. 
  Отбросим очевидный случай, когда $A$ лежит на границе доски (тогда  $S_{1}$ = 0  или  $S_{2}$ = 0).  Если  $S_{1}$ < 18,  можно сдвинуть $A$ вправо, чтобы стало  $S_{1}$ = 18  (поскольку 18 делится как на 2,
так и на 3), при этом  $F = S_{1} + S_{2}$  не уменьшится. Если  $S_{1}$ > 18,  можно сдвинуть $A$ влево, чтобы стало  $S_{1}$ = 18,  при этом  $F = 18 + S_{2}$  увеличится.
  Остался единственный случай  $S_{1} = 18,  S_{2} = 3$,  а в нём неравенство выполнено.


Ответ

15 очков.

Замечания

9 баллов

Источники и прецеденты использования

олимпиада
Название Турнир городов
номер/год
Номер 41
Год 2019/20
вариант
Вариант весенний тур, сложный вариант, 8-9 класс
задача
Номер 6

© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .