Loading [Contrib]/a11y/accessibility-menu.js
ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Годы:
Фильтр
Сложность с по   Класс с по  
Выбрано 17 задач
Версия для печати
Убрать все задачи

На сторонах AB, BC и CA равностороннего треугольника ABC отложены равные отрезки AD, BE и CF. Точки D, E и F соединены отрезками.
Докажите, что треугольник DEF – равносторонний.

Вниз   Решение


В треугольнике ABC известно, что  AB < BC < AC,  а один из углов вдвое меньше другого и втрое меньше третьего. Найдите угол при вершине A.

ВверхВниз   Решение


Точки A, B, C и D последовательно расположены на окружности, причём центр O окружности расположен внутри четырёхугольника ABCD. Точки K, L, M и N – середины отрезков AB, BC, CD и AD соответственно. Докажите, что  ∠KON + ∠MOL = 180°.

ВверхВниз   Решение


Пусть m и n – целые числа. Докажите, что  mn(m + n)  – чётное число.

ВверхВниз   Решение


На листе бумаги нарисован выпуклый многоугольник M периметра P и площади S. Закрасили каждый круг радиуса R с центром в каждой точке, лежащей внутри этого многоугольника. Найдите площадь закрашенной фигуры.

ВверхВниз   Решение


Решить в целых числах уравнения   a)  1/a + 1/b = 1/7;   б)  1/a + 1/b = 1/25.

ВверхВниз   Решение


Основания прямоугольной трапеции равны 6 и 8. Один из углов при меньшем основании равен 120°. Найдите диагонали трапеции.

ВверхВниз   Решение


Отрезки AB и CD пересекаются. Докажите, что если отрезки AC, CB, BD и AD равны, то луч AB является биссектрисой угла CAD, луч CD – биссектрисой угла ACB, а CD перпендикулярно AB.

ВверхВниз   Решение


Найдется ли такое n, при котором   ?   А больше 1000?

ВверхВниз   Решение


Пусть даны последовательности чисел {an} и {bn}, связанные соотношением $ \Delta$bn = an,    (n = 1, 2,...). Как связаны частичные суммы Sn последовательности {an}

Sn = a1 + a2 +...+ an

с последовательностью {bn}?

ВверхВниз   Решение


Две прямые, проходящие через точку M, лежащую вне окружности с центром O, касаются окружности в точках A и B. Отрезок OM делится окружностью пополам. В каком отношении отрезок OM делится прямой AB?

ВверхВниз   Решение


На плоскости даны 10 точек: несколько из них – белые, а остальные – чёрные. Некоторые точки соединены отрезками. Назовём точку особой, если более половины соединенных с ней точек имеют цвет, отличный от её цвета. Каждым ходом выбирается одна из особых точек (если такие есть) и перекрашивается в противоположный цвет. Докажите, что через несколько ходов не останется ни одной особой точки.

ВверхВниз   Решение


Докажите, что уравнение  xx + 2yy = zz  не имеет решений в натуральных числах.

ВверхВниз   Решение


У деда Мороза в мешке бесконечное число конфет, занумерованных натуральными числами. За минуту до Нового года он начинает дарить детям конфеты. Сначала он дарит детям конфету с номером 1. За полминуты до Нового года он дарит 2 конфеты с номерами 2 и 3, а конфету с номером 1 отбирает, за 15 секунд до Нового года он дарит 4 конфеты с номерами 4, 5, 6, 7, а 2 конфеты с номерами 2 и 3 отбирает, и т.д., за 1/2n долю минуты до Нового года дед Мороз дарит 2n конфет с номерами от 2n до 2n+1-1 и отбирает 2n-1 конфет с номерами от 2n-1 до 2n-1. Сколько конфет будет у деда Мороза и у детей в момент встречи Нового года?

ВверхВниз   Решение


На прямой выбраны три точки A, B и C, причём  AB = 3,  BC = 5.  Чему может быть равно AC?

ВверхВниз   Решение


Найдите все пары натуральных чисел  (x, y),  удовлетворяющие уравнению  xy – x + 4y = 15.

ВверхВниз   Решение


Даны четыре палочки. Оказалось, что из любых трёх из них можно сложить треугольник, при этом площади всех четырех треугольников равны. Обязательно ли все палочки одинаковой длины?

Вверх   Решение

Задачи

Страница: << 25 26 27 28 29 30 31 >> [Всего задач: 1957]      



Задача 66473

Темы:   [ Площадь (прочее) ]
[ Примеры и контрпримеры. Конструкции ]
[ Площадь треугольника (прочее) ]
Сложность: 3
Классы: 8,9,10,11

Даны четыре палочки. Оказалось, что из любых трёх из них можно сложить треугольник, при этом площади всех четырех треугольников равны. Обязательно ли все палочки одинаковой длины?
Прислать комментарий     Решение


Задача 66478

Тема:   [ Теория чисел. Делимость (прочее) ]
Сложность: 3
Классы: 8,9,10,11

Существует ли число, в десятичной записи квадрата которого имеется последовательность цифр «2018»?
Прислать комментарий     Решение


Задача 66479

Темы:   [ Геометрия на клетчатой бумаге ]
[ Комбинаторная геометрия (прочее) ]
Сложность: 3
Классы: 8,9,10,11

В клетчатом квадрате со стороной 2018 часть клеток покрашены в белый цвет, остальные — в чёрный. Известно, что из этого квадрата можно вырезать квадрат $10\times 10$, все клетки которого белые, и квадрат $10\times 10$, все клетки которого чёрные. При каком наименьшем $d$ можно гарантировать, что из него можно вырезать квадрат $10\times 10$, в котором количество чёрных и белых клеток отличается не больше чем на $d$?
Прислать комментарий     Решение


Задача 66480

Темы:   [ Вписанные и описанные окружности ]
[ Треугольники (прочее) ]
Сложность: 3
Классы: 8,9,10,11

Точка $O$ — центр описанной окружности треугольника $ABC$, $AH$ — его высота. Точка $P$ — основание перпендикуляра, опущенного из точки $A$ на прямую $CO$. Докажите, что прямая $HP$ проходит через середину отрезка $AB$.
Прислать комментарий     Решение


Задача 66484

Темы:   [ Квадратный трехчлен (прочее) ]
[ Графики и ГМТ на координатной плоскости ]
Сложность: 3
Классы: 8,9,10,11

Графики квадратного трёхчлена и его производной разбивают координатную плоскость на четыре части. Сколько корней имеет этот квадратный трёхчлен?
Прислать комментарий     Решение


Страница: << 25 26 27 28 29 30 31 >> [Всего задач: 1957]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .