ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Выпуски:
Фильтр
Сложность с по   Класс с по  
Выбрана 1 задача
Версия для печати
Убрать все задачи

Даны два взаимно простых натуральных числа a и b. Рассмотрим множество M целых чисел, представимых в виде  ax + by,  где x и y – целые неотрицательные числа.
  а) Каково наибольшее целое число c, не принадлежащее множеству М?
  б) Докажите, что из двух чисел n и  сn  (где n – любое целое) одно принадлежит М, а другое нет.

   Решение

Задачи

Страница: << 1 2 3 4 5 6 7 >> [Всего задач: 50]      



Задача 73721  (#М186)

Темы:   [ Уравнения в целых числах ]
[ Упорядочивание по возрастанию (убыванию) ]
[ Принцип крайнего (прочее) ]
[ Перебор случаев ]
Сложность: 3+
Классы: 7,8,9,10

Найдите все решения уравнения  1/x + 1/y + 1/z = 1  в целых числах, отличных от 1.

Прислать комментарий     Решение

Задача 73723  (#М188)

Темы:   [ Связность и разложение на связные компоненты ]
[ Разбиения на пары и группы; биекции ]
Сложность: 4
Классы: 8,9,10

Между некоторыми из 2n городов установлено воздушное сообщение, причём каждый город связан (беспосадочными рейсами) не менее чем с n другими.
  а) Докажите, что если отменить любые  n – 1  рейсов, то всё равно из любого города можно добраться в любой другой на самолётах (с пересадками).
  б) Укажите все случаи, когда связность нарушается при отмене n рейсов.

Прислать комментарий     Решение

Задача 73727  (#М192)

Темы:   [ Делимость чисел. Общие свойства ]
[ Принцип Дирихле (прочее) ]
[ Разбиения на пары и группы; биекции ]
Сложность: 4-
Классы: 7,8,9

Даны числа 1, 2, 3, ..., 1000. Найдите наибольшее число m, обладающее таким свойством: какие бы m из данных чисел ни вычеркнуть, среди оставшихся  1000 – m  чисел найдутся два, из которых одно делится на другое.

Прислать комментарий     Решение

Задача 57349  (#М193)

Темы:   [ Неравенства с площадями ]
[ Наименьшая или наибольшая площадь (объем) ]
[ Пятиугольники ]
[ Отношение площадей треугольников с общим основанием или общей высотой ]
Сложность: 5
Классы: 8,9

Докажите, что сумма площадей пяти треугольников, образованных парами соседних сторон и соответствующими диагоналями выпуклого пятиугольника, больше площади всего пятиугольника.
Прислать комментарий     Решение


Задача 73729  (#М194)

Темы:   [ Центральная симметрия помогает решить задачу ]
[ Геометрические интерпретации в алгебре ]
[ Уравнения в целых числах ]
[ Целочисленные решетки ]
Сложность: 4+
Классы: 8,9,10

Даны два взаимно простых натуральных числа a и b. Рассмотрим множество M целых чисел, представимых в виде  ax + by,  где x и y – целые неотрицательные числа.
  а) Каково наибольшее целое число c, не принадлежащее множеству М?
  б) Докажите, что из двух чисел n и  сn  (где n – любое целое) одно принадлежит М, а другое нет.

Прислать комментарий     Решение

Страница: << 1 2 3 4 5 6 7 >> [Всего задач: 50]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .