ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Годы:
Фильтр
Сложность с по   Класс с по  
Выбрана 1 задача
Версия для печати
Убрать все задачи

Найти все действительные решения системы уравнений  

   Решение

Задачи

Страница: << 207 208 209 210 211 212 213 >> [Всего задач: 1957]      



Задача 78110

Темы:   [ ГМТ с ненулевой площадью ]
[ Метод координат на плоскости ]
Сложность: 4-
Классы: 8,9

Прямые OA и OB перпендикулярны. Найти геометрическое место концов M таких ломаных OM длины 1, которые каждая прямая, параллельная OA или OB, пересекает не более чем в одной точке.
Прислать комментарий     Решение


Задача 78111

Темы:   [ Арифметика остатков (прочее) ]
[ Примеры и контрпримеры. Конструкции ]
Сложность: 4-
Классы: 7,8,9

Радиолампа имеет семь контактов, расположенных по кругу и включаемых в штепсель, имеющий семь отверстий. Можно ли так занумеровать контакты лампы и отверстия штепселя, чтобы при любом включении лампы хотя бы один контакт попал на свое место (то есть в отверстие с тем же номером)?

Прислать комментарий     Решение

Задача 78118

Темы:   [ Системы алгебраических нелинейных уравнений ]
[ Выделение полного квадрата. Суммы квадратов ]
Сложность: 4-
Классы: 9

Найти все действительные решения системы уравнений  

Прислать комментарий     Решение

Задача 78120

Темы:   [ Площадь многоугольника ]
[ Площадь треугольника (через высоту и основание) ]
[ Композиция параллельных переносов ]
Сложность: 4-
Классы: 10,11

Два прямоугольника положены на плоскость так, что их границы имеют восемь точек пересечения. Эти точки соединены через одну. Доказать, что площадь полученного четырёхугольника не изменится при поступательном перемещении одного из прямоугольников.
Прислать комментарий     Решение


Задача 78122

Темы:   [ Арифметика остатков (прочее) ]
[ Четность и нечетность ]
[ Доказательство от противного ]
Сложность: 4-
Классы: 8,9,10

Два равных диска насажены на одну ось. На окружности каждого из них по кругу на одинаковых расстояниях в произвольном порядке расставлены числа 1, 2, 3, ..., 20. Всегда ли можно повернуть один диск относительно другого так, чтобы никакие два одинаковых числа не стояли друг против друга?

Прислать комментарий     Решение

Страница: << 207 208 209 210 211 212 213 >> [Всего задач: 1957]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .