Loading [Contrib]/a11y/accessibility-menu.js
ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Годы:
Фильтр
Сложность с по   Класс с по  
Выбрано 16 задач
Версия для печати
Убрать все задачи

Один раз рыбак забросил в пруд сеть и вытащил 30 рыб. Пометив каждую рыбу меткой, он выпустил улов обратно в пруд. На следующий день рыбак снова забросил сеть и вытащил 40 рыб, среди которых были две помеченные. Как по этим данным приблизительно вычислить число рыб в пруду?

Вниз   Решение


Диагонали четырёхугольника делят его углы пополам. Докажите, что в такой четырёхугольник можно вписать окружность.

ВверхВниз   Решение


Докажите, что если a и b – две стороны треугольника, γ – угол между ними и l – биссектриса этого угла, то

l = .

ВверхВниз   Решение


С числом 123456789101112...9989991000 производится следующая операция: зачёркиваются две соседние цифры a и b (a стоит перед b) и на их место вставляется число a + 2b (можно в качестве a взять нуль, ``стоящий'' перед числом, а в качестве b — первую цифру числа). С полученным числом производится такая же операция и т.д. (Например, из числа 118 307 можно на первом шаге получить числа 218 307, 38 307, 117 307, 111 407, 11 837, 118 314.) Доказать, что таким способом можно получить число 1.

ВверхВниз   Решение


Найдите площадь правильного шестиугольника, описанного около окружности, если известно, что хорда этой окружности, равная 4, удалена от её центра на расстояние, равное 5.

ВверхВниз   Решение


Две хорды окружности взаимно перпендикулярны.
Докажите, что расстояние от точки их пересечения до центра окружности равно расстоянию между их серединами.

ВверхВниз   Решение


Высоты треугольника ABC, проведённые из вершин A и C, пересекаются в точке M. Найдите ∠AMC, если  ∠A = 70°,  ∠C = 80°.

ВверхВниз   Решение


В равнобедренном треугольнике ABC (AB = BC) проведена высота CD . Угол BAC равен α . Радиус окружности, проходящей через точки A , C и D , равен R . Найдите площадь треугольника ABC .

ВверхВниз   Решение


Колода перфокарт четырёх цветов разложена в один ряд. Если две перфокарты одного цвета лежат рядом или через одну, то можно выбрасывать ту из них, которая левее. Кроме того, можно подкладывать справа любое количество перфокарт из других колод. Доказать, что можно подкладывать и выбрасывать перфокарты таким образом, чтобы в конце концов их осталось только четыре.

ВверхВниз   Решение


Окружность радиуса 2 касается окружности радиуса 4 в точке B. Прямая, проходящая через точку B , пересекает окружность меньшего радиуса в точке A, а большего радиуса – в точке C. Найдите BC, если  AC = 3

ВверхВниз   Решение


Найдите последние две цифры в десятичной записи числа  1! + 2! + ... + 2001! + 2002!.

ВверхВниз   Решение


Дан треугольник ABC площади 1. На медианах AK, BL и CN взяты точки P, Q и R так, что  AP = PK,  BQ : QL = 1 : 2,  CR : RN = 5 : 4.  Найдите площадь треугольника PQR.

ВверхВниз   Решение


Три окружности радиусов 3, 4, 5 внешне касаются друг друга. Через точку касания окружностей радиусов 3 и 4 проведена их общая касательная. Найти длину отрезка этой касательной, заключённой внутри окружности радиуса 5.

ВверхВниз   Решение


Из одной точки проведены к кругу две касательные. Длина касательной равна 156, а расстояние между точками касания равно 120. Найдите радиус круга.

ВверхВниз   Решение


Даны два одинаковых пересекающихся круга. Отношение расстояния между их центрами к радиусу равно 2m . Третий круг касается внешним образом первых двух и их общей касательной. Найдите отношение площади общей части первых двух кругов к площади третьего круга.

ВверхВниз   Решение


В некоторых клетках квадратной таблицы n×n стоят звёздочки. Известно, что если вычеркнуть любой набор строк (только не все), то найдётся столбец ровно с одной невычеркнутой звёздочкой. (В частности, если строки совсем не вычёркивать, то столбец ровно с одной звёздочкой существует.) Доказать, что если вычеркнуть любой набор столбцов (только не все), то найдётся строка ровно с одной невычеркнутой звёздочкой.

Вверх   Решение

Задачи

Страница: << 121 122 123 124 125 126 127 >> [Всего задач: 1982]      



Задача 78688

Тема:   [ Арифметика остатков (прочее) ]
Сложность: 3+
Классы: 10,11

На поверхности кубика мелом отмечено 100 различных точек. Докажите, что можно двумя различными способами поставить кубик на чёрный стол (причём в точности на одно и то же место) так, чтобы отпечатки от мела на столе при этих способах были разными. (Если точка отмечена на ребре или в вершине, она тоже даёт отпечаток.)

Прислать комментарий     Решение

Задача 78690

Тема:   [ Средняя линия трапеции ]
Сложность: 3+
Классы: 8,9

Старинный замок был обнесён треугольной стеной. Каждая сторона стены была поделена на три равные части, и в этих точках, а также в вершинах были построены башни. Всего вдоль стены было 9 башен: A, E, F, B, K, L, C, M, N. Со временем все стены и башни, кроме башен E, K, M, разрушились. Как по оставшимся башням определить, где находились башни A, B, C, если известно, что башни A, B, C стояли в вершинах?

Прислать комментарий     Решение

Задача 78691

Тема:   [ Турниры и турнирные таблицы ]
Сложность: 3+
Классы: 8

В Чили в феврале проходил международный турнир по футболу. Первое место с 8 очками занял местный клуб "Коло-Коло". На очко отстало московское "Динамо" и заняло второе место. Третье место с 4 очками занял бразильский клуб "Коринтианс". Четвёртое место занял югославский клуб "Црвена Звезда", также набравший 4 очка. Доказать, что по этим данным можно точно определить, сколько ещё команд участвовало в турнире и по сколько очков они набрали. (За победу присуждается 2 очка, за ничью – 1, за поражение – 0.)

Прислать комментарий     Решение

Задача 78692

Темы:   [ Десятичная система счисления ]
[ Арифметика остатков (прочее) ]
[ Признаки делимости (прочее) ]
Сложность: 3+
Классы: 7,8,9

Доказать, что никакая степень числа 2 не оканчивается четырьмя одинаковыми цифрами.

Прислать комментарий     Решение

Задача 78697

Темы:   [ Примеры и контрпримеры. Конструкции ]
[ Линейные неравенства и системы неравенств ]
Сложность: 3+
Классы: 9

Можно ли записать в строку 20 чисел так, чтобы сумма любых трёх последовательных чисел была положительна, а сумма всех 20 чисел была отрицательна?

Прислать комментарий     Решение

Страница: << 121 122 123 124 125 126 127 >> [Всего задач: 1982]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .