Страница:
<< 189 190 191 192
193 194 195 >> [Всего задач: 1957]
|
|
Сложность: 4- Классы: 10,11
|
У трёхгранного угла проведены биссектрисы плоских углов. Доказать, что
попарные углы между биссектрисами либо одновременно тупые, либо одновременно
прямые, либо одновременно острые.
|
|
Сложность: 4- Классы: 7,8,9
|
На плоскости расположено
N точек. Отметим середины всевозможных отрезков с
концами в этих точках. Какое наименьшее число отмеченных точек может
получиться?
|
|
Сложность: 4- Классы: 7,8,9
|
Коля и Витя играют в следующую игру. На столе лежит куча из 31 камня. Мальчики
делают ходы поочерёдно, а начинает Коля. Делая ход, играющий делит каждую
кучку, в которой больше одного камня, на две меньшие кучки. Выигрывает тот, кто
после своего хода оставляет кучки по одному камню в каждой. Сможет ли Коля
сделать так, чтобы выиграть при любой игре Вити?
|
|
Сложность: 4- Классы: 9,10,11
|
На сферическом Солнце обнаружено конечное число круглых пятен, каждое из
которых занимает меньше половины поверхности Солнца. Эти пятна предполагаются
замкнутыми (т.е. граница пятна принадлежит ему) и не пересекаются между собой.
Доказать, что на Солнце найдутся две диаметрально противоположные точки, не
покрытые пятнами.
|
|
Сложность: 4- Классы: 8,9,10
|
Дано число
x, большее 1. Обязательно ли имеет место равенство
[
] = [
]?
Страница:
<< 189 190 191 192
193 194 195 >> [Всего задач: 1957]