Loading [Contrib]/a11y/accessibility-menu.js
ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Годы:
Фильтр
Сложность с по   Класс с по  
Выбрано 14 задач
Версия для печати
Убрать все задачи

Калькулятор выполняет пять операций: сложение, вычитание, умножение, деление и извлечение квадратного корня. Найдите формулу, по которой на этом калькуляторе можно определить наименьшее из двух произвольных чисел a и b.

Вниз   Решение


Докажите, что если две стороны и угол против меньшей из них одного треугольника соответственно равны двум сторонам и углу против меньшей из них другого треугольника, то треугольники могут быть как равными, так и не равными.

ВверхВниз   Решение


Аня называет дату красивой, если все 6 цифр её записи различны. Например, 19.04.23 — красивая дата, а 19.02.23 и 01.06.23 — нет. А сколько всего красивых дат в 2023 году?

ВверхВниз   Решение


Целые числа a и b таковы, что  56a = 65b.  Докажите, что   a + b  – составное число.

ВверхВниз   Решение


Боковая сторона равнобедренной трапеции равна 41, высота равна 40 и средняя линия равна 45. Найдите основания.

ВверхВниз   Решение


Внутри окружности расположен выпуклый пятиугольник (вершины могут лежать как внутри, так и на окружности). Доказать, что хотя бы одна из его сторон не больше стороны правильного пятиугольника, вписанного в эту окружность.

ВверхВниз   Решение


Сторона основания правильной четырёхугольной пирамиды равна a , боковая грань образует с плоскостью основания угол 60o . Найдите радиус вписанной сферы.

ВверхВниз   Решение


Верно ли следующее утверждение: "Если четырёхугольник имеет ось симметрии, то это либо равнобедренная трапеция, либо прямоугольник, либо ромб"?

ВверхВниз   Решение


Из шести костяшек домино (см. рис.) сложите прямоугольник 3×4 так, чтобы во всех трёх строчках точек было поровну и во всех четырёх столбцах точек было тоже поровну.

ВверхВниз   Решение


Лиса и два медвежонка делят 100 конфет. Лиса раскладывает конфеты на три кучки; кому какая достанется - определяет жребий. Лиса знает, что если медвежатам достанется разное количество конфет, то они попросят её уравнять их кучки, и тогда она заберёт излишек себе. После этого все едят доставшиеся им конфеты.
  а) Придумайте, как Лисе разложить конфеты по кучкам так, чтобы съесть ровно 80 конфет (ни больше, ни меньше).
  б) Может ли Лиса сделать так, чтобы в итоге съесть ровно 65 конфет?

ВверхВниз   Решение


Докажите, что не существует многогранника, у которого было бы ровно семь рёбер.

ВверхВниз   Решение


Острый угол прямоугольного треугольника равен 30°, а гипотенуза равна 8.
Найдите отрезки, на которые делит гипотенузу высота, проведённая из вершины прямого угла.

ВверхВниз   Решение


Можно ли расставить на окружности числа 1, 2...12 так, чтобы разность между двумя рядом стоящими числами была 3, 4 или 5?

ВверхВниз   Решение


Докажите, что из 53 различных натуральных чисел, не превосходящих в сумме 1990, всегда можно выбрать 2 числа, составляющих в сумме 53.

Вверх   Решение

Задачи

Страница: << 180 181 182 183 184 185 186 >> [Всего задач: 1957]      



Задача 79551

Темы:   [ Последовательности (прочее) ]
[ Примеры и контрпримеры. Конструкции ]
[ Разбиения на пары и группы; биекции ]
[ Десятичная система счисления ]
Сложность: 3+
Классы: 7,8,9

Подмножество X множества "двузначных" чисел 00, 01, ..., 98, 99 таково, что в любой бесконечной последовательности цифр найдутся две цифры, стоящие рядом и образующие число из X. Какое наименьшее количество чисел может содержаться в X?
Прислать комментарий     Решение


Задача 79571

Темы:   [ Разбиения на пары и группы; биекции ]
[ Доказательство от противного ]
Сложность: 3+
Классы: 9

Докажите, что из 53 различных натуральных чисел, не превосходящих в сумме 1990, всегда можно выбрать 2 числа, составляющих в сумме 53.
Прислать комментарий     Решение


Задача 79580

Темы:   [ Замена переменных ]
[ Тригонометрия (прочее) ]
[ Геометрические интерпретации в алгебре ]
Сложность: 3+
Классы: 10,11

Найдите наибольшее значение выражения

x$\displaystyle \sqrt{1-y^2}$ + y$\displaystyle \sqrt{1-x^2}$.
Прислать комментарий     Решение

Задача 86118

Темы:   [ Системы тригонометрических уравнений и неравенств ]
[ Производная и экстремумы ]
Сложность: 3+
Классы: 11

Числа a и b таковы, что первое уравнение системы
{ sin x+a=bx
cos x=b

имеет ровно два решения. Докажите, что система имеет хотя бы одно решение.
Прислать комментарий     Решение


Задача 86124

Темы:   [ Системы тригонометрических уравнений и неравенств ]
[ Производная и экстремумы ]
Сложность: 3+
Классы: 11

Числа a и b таковы, что первое уравнение системы
{ cos x=ax+b
sin x+a=0

имеет ровно два решения. Докажите, что система имеет хотя бы одно решение.
Прислать комментарий     Решение


Страница: << 180 181 182 183 184 185 186 >> [Всего задач: 1957]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .