Loading [Contrib]/a11y/accessibility-menu.js
ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Выбрано 16 задач
Версия для печати
Убрать все задачи

Из посёлка Морозки ведет прямая дорога, в стороне от неё, на поле, расположена водокачка. Путнику нужно попасть из Морозок к водокачке. По дороге путник идет со скоростью 4 км/ч, а по полю – 3 км/ч. Как ему следует выбрать маршрут, чтобы дойти быстрее всего?

Вниз   Решение


В таблице  n×n  разрешается добавить ко всем числам любого несамопересекающегося замкнутого маршрута ладьи по 1. В первоначальной таблице по диагонали стояли единицы, а остальные были нули. Можно ли с помощью нескольких разрешённых преобразований добиться того, что все числа в таблице станут равны? (Считается, что ладья побывала во всех клетках таблицы, через которые проходит её путь.)

ВверхВниз   Решение


В Москве живет 2000 скалолазов, в Санкт-Петербурге и Красноярске — по 500, в Екатеринбурге — 200, а остальные 100 рассеяны по территории России. Где нужно устроить чемпионат России по скалолазанию, чтобы транспортные расходы участников были минимальны?

ВверхВниз   Решение


а) Докажите, что если  a + ha = b + hb = c + hc, то треугольник ABC правильный.
б) В треугольник ABC вписаны три квадрата: у одного две вершины лежат на стороне AC, у другого — на BC, у третьего — на AB. Докажите, что если все три квадрата равны, то треугольник ABC правильный.

ВверхВниз   Решение


Автор: Дидин М.

Дан вписанный четырёхугольник АВСD. Продолжения его противоположных сторон пересекаются в точках P и Q. Пусть К и N – середины диагоналей.
Докажите, что сумма углов PKQ и PNQ равна 180°.

ВверхВниз   Решение


Докажите, что если точка пересечения высот остроугольного треугольника делит высоты в одном и том же отношении, то треугольник правильный.

ВверхВниз   Решение


Автор: Анджанс А.

В банде 101 террорист. Все вместе они в вылазках ни разу не участвовали, а каждые двое встречались в вылазках ровно по разу.
Докажите, что один из террористов участвовал не менее чем в 11 различных вылазках.

ВверхВниз   Решение


Группа туристов должна была прибыть на вокзал в 5 часов. К этому времени с турбазы за ними должен был прийти автобус. Однако, прибыв на вокзал в 3:10, туристы пошли пешком на турбазу. Встретив на дороге автобус, они сели в него и прибыли на турбазу на 20 минут раньше предусмотренного времени. С какой скоростью шли туристы до встречи с автобусом, если скорость автобуса 60 км/ч?

ВверхВниз   Решение


Выйдя на маршрут в 4 часа утра, альпинист Джеф Лоу к вечеру достиг пика "Свободная Корея". Переночевав на вершине, на следующий день он вышел в то же время и быстро спустился обратно по пути подъема. Докажите, что на маршруте есть такая точка, которую Лоу во время спуска и во время подъема проходил в одно и то же время суток.

ВверхВниз   Решение


Через две вершины треугольника проведены прямые, разбивающие его на три треугольника и четырёхугольник.

а) Могут ли площади всех четырёх частей быть равны?

б) Какие три из этих частей могут иметь равные площади? Во сколько раз отличается от них площадь четвёртой части?

ВверхВниз   Решение


Автор: Фольклор

Конечно или бесконечно число натуральных решений уравнения  x² + y³ = z²?

ВверхВниз   Решение


Вершины A, B, C треугольника соединены с точками A1, B1, C1, лежащими на противоположных сторонах (не в вершинах).
Могут ли середины отрезков AA1, BB1, CC1 лежать на одной прямой?

ВверхВниз   Решение


В некотором королевстве было 32 рыцаря. Некоторые из них были вассалами других (вассал может иметь только одного сюзерена, причём сюзерен всегда богаче своего вассала). Рыцарь, имевший не менее четырёх вассалов, носил титул барона. Какое наибольшее число баронов могло быть при этих условиях?
(В королевстве действовал закон: "вассал моего вассала – не мой вассал".)

ВверхВниз   Решение


Автор: Фольклор

Числа 1, 2, 3, ..., 25 расставляют в таблицу  5×5  так, чтобы в каждой строке числа были расположены в порядке возрастания.
Какое наибольшее и какое наименьшее значение может иметь сумма чисел в третьем столбце?

ВверхВниз   Решение


Можно ли в таблицу 9×9 расставить такие натуральные числа, что одновременно выполняются следующие условия:
  1) произведения чисел, стоящих в одной строке, одинаковы для всех строк;
  2) произведения чисел, стоящих в одном столбце, одинаковы для всех столбцов;
  3) среди чисел нет равных;
  4) все числа не больше 1991?

ВверхВниз   Решение


Через S(n) обозначим сумму цифр числа n (в десятичной записи).
Существуют ли три таких различных натуральных числа m, n и p, что   m + S(m) = n+S(n) = p + S(p)?

Вверх   Решение

Задачи

Страница: 1 2 >> [Всего задач: 6]      



Задача 98189  (#1)

Темы:   [ Последовательности (прочее) ]
[ Рекуррентные соотношения (прочее) ]
Сложность: 3+
Классы: 6,7,8

В строчку выписано 10 целых чисел. Вторая строчка находится так: под каждым числом A первой строчки пишется число, равное количеству чисел первой строчки, которые больше A и при этом стоят правее A. По второй строчке аналогично строится третья строчка и т. д.
  а) Докажите, что все строчки, начиная с некоторой – нулевые (состоят из сплошных нулей).
  б) Каково максимально возможное число ненулевых строчек (содержащих хотя бы одно число, отличное от нуля)?

Прислать комментарий     Решение

Задача 108595  (#2)

Темы:   [ Перегруппировка площадей ]
[ Прямоугольники и квадраты. Признаки и свойства ]
Сложность: 4-
Классы: 8,9

Автор: Фольклор

Внутри квадрата ABCD лежит квадрат PQRS. Отрезки AP, BQ, CR и DS не пересекают друг друга и стороны квадрата PQRS.
Докажите, что сумма площадей четырёхугольников ABQP и CDSR равна сумме площадей четырёхугольников BCRQ и DAPS.

Прислать комментарий     Решение

Задача 108596  (#3)

Темы:   [ Вспомогательные равные треугольники ]
[ Параллелограмм Вариньона ]
[ Поворот помогает решить задачу ]
[ Ортоцентр и ортотреугольник ]
[ Связь величины угла с длиной дуги и хорды ]
Сложность: 3+
Классы: 8,9

Дан невыпуклый несамопересекающийся четырёхугольник, который имеет три внутренних угла по 45°.
Докажите, что середины его сторон лежат в вершинах квадрата.

Прислать комментарий     Решение

Задача 98192  (#4)

Темы:   [ Геометрия на клетчатой бумаге ]
[ Связность и разложение на связные компоненты ]
[ Примеры и контрпримеры. Конструкции ]
Сложность: 3
Классы: 6,7,8

В каждой клетке квадрата  8×8  клеток проведена одна из диагоналей. Рассмотрим объединение этих 64 диагоналей. Оно состоит из нескольких связных частей (к одной части относятся точки, между которыми можно пройти по одной или нескольким диагоналям). Может ли количество этих частей быть
  а) больше 15?
  б) больше 20?

Прислать комментарий     Решение

Задача 98193  (#5)

Темы:   [ Десятичная система счисления ]
[ Примеры и контрпримеры. Конструкции ]
Сложность: 4-
Классы: 7,8,9

Через S(n) обозначим сумму цифр числа n (в десятичной записи).
Существуют ли три таких различных натуральных числа m, n и p, что   m + S(m) = n+S(n) = p + S(p)?
Прислать комментарий     Решение


Страница: 1 2 >> [Всего задач: 6]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .