Страница:
<< 204 205 206 207
208 209 210 >> [Всего задач: 1984]
|
|
|
Сложность: 4- Классы: 9,10,11
|
Дан описанный четырёхугольник $ABCD$ с тупым углом $ABC$. Лучи $AB$ и $DC$ пересекаются в точке $P$, а лучи $DA$ и $CB$ – в точке $Q$. Докажите, что $|AD - CD| \geq |r_1 - r_2|$, где $r_1$ и $r_2$ – радиусы вписанных окружностей треугольников $PBC$ и $QAB$.
|
|
|
Сложность: 4- Классы: 10,11
|
Даны две треугольные пирамиды с общим основанием $ABC$. Их вершины $S$ и $R$
лежат по разные стороны от плоскости $ABC$. Все боковые рёбра одной пирамиды параллельны соответствующим боковым граням другой. Докажите, что объём одной пирамиды вдвое больше объёма другой.
|
|
|
Сложность: 4- Классы: 8,9,10,11
|
Пусть $O$ – центр описанной окружности остроугольного треугольника $ABC$. На стороне $BC$ отметили точку $D$. Окружности, описанные около треугольников $BOD$ и $COD$, повторно пересекают отрезки $AB$ и $AC$ в точках $X$ и $Y$ соответственно. Докажите, что из отрезков $BX$, $XY$ и $YC$ можно сложить треугольник.
На плоскости дан угол, образованный двумя лучами a и b, и
некоторая точка M.
Провести через точку M прямую c так, чтобы треугольник, образованный прямыми a, b и c, имел периметр данной величины.
|
|
|
Сложность: 4- Классы: 9,10,11
|
Решить уравнение
= x.
Страница:
<< 204 205 206 207
208 209 210 >> [Всего задач: 1984]