Страница:
<< 77 78 79 80
81 82 83 >> [Всего задач: 2393]
|
|
Сложность: 5 Классы: 10,11
|
Семь треугольных пирамид стоят на столе. Для любых трех из них существует горизонтальная плоскость,
которая пересекает их по треугольникам равной площади. Доказать, что существует плоскость,
пересекающая все семь пирамид по треугольникам равной площади.
|
|
Сложность: 5 Классы: 10,11
|
Квадрат
n×
n (
n 3
) склеен
в цилиндр. Часть клеток покрашена в черный цвет. Докажите, что
найдутся две параллельных линии (две горизонтали, две вертикали или
две диагонали), содержащие одинаковое количество черных клеток.
|
|
Сложность: 5 Классы: 10,11
|
Можно ли расположить в пространстве 12 прямоугольных параллелепипедов
P1 ,
P2 ,
P12
,
ребра которых параллельны координатным осям
Ox ,
Oy ,
Oz так, чтобы
P2 пересекался (т.е. имел хотя бы одну общую точку)
с каждым из оставшихся, кроме
P1 и
P3 ,
P3 пересекался с каждым из оставшихся, кроме
P2 и
P4 , и т.д.,
P12
пересекался с каждым из оставшихся, кроме
P11
и
P1 ,
P1 пересекался с каждым из оставшихся, кроме
P12
и
P2 ?
(Поверхность параллелепипеда принадлежит ему.)
|
|
Сложность: 5 Классы: 10,11
|
Окружность с центром
I , вписанная в грань
ABC треугольной пирамиды
SABC ,
касается отрезков
AB ,
BC ,
CA в точках
D ,
E ,
F
соответственно. На отрезках
SA ,
SB ,
SC отмечены соответственно точки
A' ,
B' ,
C' так, что
AA'=AD ,
BB'=BE ,
CC'=CF ;
S' –
точка на описанной сфере пирамиды, диаметрально противоположная точке
S . Известно, что
SI является высотой пирамиды. Докажите, что
точка
S' равноудалена от точек
A' ,
B' ,
C' .
|
|
Сложность: 5 Классы: 10,11
|
Многогранник описан около сферы. Назовем его грань большой, если
проекция сферы на плоскость грани целиком попадает в грань.
Докажите, что больших граней не больше 6.
Страница:
<< 77 78 79 80
81 82 83 >> [Всего задач: 2393]