ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Задачи

Страница: << 197 198 199 200 201 202 203 >> [Всего задач: 2393]      



Задача 110269

Темы:   [ Пирамида (прочее) ]
[ Углы между прямыми и плоскостями ]
Сложность: 3
Классы: 10,11

Докажите, что если боковые рёбра пирамиды образуют с плоскостью основания равные углы, то в основании лежит вписанный многоугольник, а высота пирамиды проходит через центр описанной окружности этого многоугольника.
Прислать комментарий     Решение


Задача 110272

Темы:   [ Пирамида (прочее) ]
[ Двугранный угол ]
[ Описанные четырехугольники ]
Сложность: 3
Классы: 10,11

Три последовательные стороны основания четырёхугольной пирамиды равны 5, 7 и 8. Найдите четвёртую сторону основания, если известно, что двугранные углы при основании равны.
Прислать комментарий     Решение


Задача 110273

Темы:   [ Площадь сечения ]
[ Подобие ]
Сложность: 3
Классы: 10,11

В пирамиде ABCD площадь грани ABC в четыре раза больше площади грани ABD . На ребре CD взята точка M , причём CM:MD = 2 . Через точку M проведены плоскости, параллельные граням ABC и ABD . Найдите отношение площадей получившихся сечений.
Прислать комментарий     Решение


Задача 110274

Темы:   [ Площадь сечения ]
[ Подобие ]
Сложность: 3
Классы: 10,11

Боковое ребро пирмиды разделено на 100 равных частей и через точки деления проведены плоскости, параллельные основанию. Найдите отношение площадей наибольшего и наименьшего из получившихся сечений.
Прислать комментарий     Решение


Задача 110275

Темы:   [ Площадь сечения ]
[ Подобие ]
Сложность: 3
Классы: 10,11

На боковом ребре AB пирамиды взяты точки K и M , причём AK = BM . Через эти точки проведены сечения, параллельные основанию пирамиды. Известно, что сумма площадей этих сечений составляет площади основания пирамиды. Найдите отношение KM:AB .
Прислать комментарий     Решение


Страница: << 197 198 199 200 201 202 203 >> [Всего задач: 2393]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .