Loading [Contrib]/a11y/accessibility-menu.js
ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Выбрана 21 задача
Версия для печати
Убрать все задачи

Точка O лежит на отрезке AB, причём AO = 13, OB = 7. С центром в точке O проведена окружность радиуса 5. Из A и B к ней проведены касательные, пересекающиеся в точке M, причём точки касания лежат по одну сторону от прямой AB. Найдите радиус окружности, описанной вокруг треугольника AMB.

Вниз   Решение


Произведение пяти чисел не равно нулю. Каждое из этих чисел уменьшили на единицу, при этом их произведение не изменилось. Приведите пример таких чисел.

ВверхВниз   Решение


Пусть M и N — середины сторон CD и DE правильного шестиугольника ABCDEF, P — точка пересечения отрезков AM и BN.
а) Найдите величину угла между прямыми AM и BN.
б) Докажите, что SABP = SMDNP.

ВверхВниз   Решение


Числовая последовательность  A1, A2, ..., An, ...  определена равенствами   A1 = 1,   A2 = – 1,   An = – An–1 – 2An–2   (n ≥ 3).
Докажите, что при любом натуральном n число     является полным квадратом.

ВверхВниз   Решение


Из имеющихся последовательностей {bn} и {cn} (возможно, {bn} совпадает с {cn})  разрешается получать последовательности  {bn + cn},
{bn – cn},  {bncn}  и  {bn/cn}  (если все члены последовательности {cn} отличны от 0). Кроме того, из любой имеющейся последовательности можно получить новую, вычеркнув несколько начальных членов. Сначала есть только последовательность {an}. Можно ли получить из неё описанными выше операциями последовательность {n}, то есть 1, 2, 3, 4, ..., если
  а)  an = n²;

  б)  

  в)  

ВверхВниз   Решение


Делится ли  222555 + 555222  на 7?

ВверхВниз   Решение


В классе 30 учеников. Докажите, что вероятность того, что у каких-нибудь двух учеников совпадают дни рождения, составляет больше 50%.

ВверхВниз   Решение


Используя результат задачи 61403, докажите неравенства:
  а)     неравенство Коши);
  б)  

  в)     где  b1 + ... + bn = 1.
  Значения переменных считаются положительными.

ВверхВниз   Решение


С помощью циркуля и линейки в данный треугольник впишите треугольник, равный другому данному треугольнику.

ВверхВниз   Решение


Дан выпуклый четырёхугольник ABCD, в котором  ∠DAB = 90°.  Пусть M – середина стороны BC. Оказалось. что  ∠ADC = ∠BAM.
Докажите, что  ∠ADB = ∠CAM.

ВверхВниз   Решение


Точки A1, B1, C1 – середины сторон соответственно BC, AC, AB треугольника ABC. Известно, что A1A и B1B – биссектрисы углов треугольника A1B1C1. Найдите углы треугольника ABC.

ВверхВниз   Решение


Существует ли такое натуральное число n, что числа n, n², n³ начинаются на одну и ту же цифру, отличную от единицы?

ВверхВниз   Решение


Из точки M внутри четырёхугольника ABCD опущены перпендикуляры на стороны. Основания перпендикуляров лежат внутри сторон. Обозначим эти основания: то, которое лежит на стороне AB — через X, лежащее на стороне BC — через Y, лежащее на стороне CD — через Z, лежащее на стороне DA — через T. Известно, что AXXB, BYYC, CZZD, DTTA. Докажите, что вокруг четырёхугольника ABCD можно описать окружность.

ВверхВниз   Решение


В равнобедренном треугольнике KLM (KL = LM) угол KLM равен $ \varphi$. Найдите отношение радиусов вписанной и описанной окружностей треугольника KLM.

ВверхВниз   Решение


Около треугольника ABC, в котором BC = a, $ \angle$B = $ \alpha$, $ \angle$C = $ \beta$, описана окружность. Биссектриса угла A пересекает эту окружность в точке K. Найдите AK.

ВверхВниз   Решение


На окружности радиуса 1 отмечено 100 точек. Доказать, что на этой окружности можно найти такую точку, чтобы сумма расстояний от неё до всех отмеченных точек была больше 100.

ВверхВниз   Решение


Найти все трёхзначные числа, равные сумме факториалов своих цифр.

ВверхВниз   Решение


Автор: Храбров А.

Совершенное число, большее 28, делится на 7. Докажите, что оно делится на 49.

ВверхВниз   Решение


С помощью циркуля и линейки через данную точку внутри круга проведите хорду, равную данному отрезку.

ВверхВниз   Решение


Дан треугольник со сторонами 12, 15, 18. Проведена окружность, касающаяся обеих меньших сторон и имеющая центр на большой стороне. Найдите отрезки, на которые центр окружности делит большую сторону треугольника.

ВверхВниз   Решение


В треугольнике ABC известно, что $ \angle$A = 120o, стороны AC = 1 и BC = $ \sqrt{7}$. На продолжении стороны CA взята точка M так, что BM является высотой треугольника ABC. Найдите радиус окружности, проходящей через точки A и M и касающейся в точке M окружности, проходящей через точки M, B и C.

Вверх   Решение

Задачи

Страница: << 46 47 48 49 50 51 52 >> [Всего задач: 289]      



Задача 116186

Темы:   [ Векторы помогают решить задачу ]
[ Неравенства с векторами ]
[ Неравенство треугольника (прочее) ]
[ Параллелограммы (прочее) ]
[ Ортогональная (прямоугольная) проекция ]
Сложность: 3+
Классы: 8,9

В треугольнике ABC на стороне AB выбраны точки K и L так, что AK = BL, а на стороне BC — точки M и N так, что CN = BM. Докажите, что KN + LMAC.

Прислать комментарий     Решение

Задача 55213

Темы:   [ Неравенства с площадями ]
[ Перпендикуляр короче наклонной. Неравенства для прямоугольных треугольников ]
[ Неравенство треугольника ]
Сложность: 3+
Классы: 8,9

Все биссектрисы треугольника меньше 1. Докажите, что его площадь меньше 1.

Прислать комментарий     Решение


Задача 73581

Темы:   [ Сумма длин диагоналей четырехугольника ]
[ Выпуклые многоугольники ]
[ Неравенство треугольника (прочее) ]
[ Многоугольники (неравенства) ]
Сложность: 3+
Классы: 7,8,9

Сколько в выпуклом многоугольнике может быть сторон, равных наибольшей диагонали?
Прислать комментарий     Решение


Задача 53618

Темы:   [ Касающиеся окружности ]
[ Теорема Пифагора (прямая и обратная) ]
[ Неравенство треугольника (прочее) ]
Сложность: 4-
Классы: 8,9

На прямой расположены три точки A, B и C, причём  AB = BC = 3.  Три окружности радиуса R имеют центры в точках A, B и C.
Найдите радиус четвёртой окружности, касающейся всех трёх данных, если   а)  R = 1;   б)  R = 2;   в)  R = 5.

Прислать комментарий     Решение

Задача 55161

Темы:   [ Свойства медиан. Центр тяжести треугольника. ]
[ Неравенства с медианами ]
[ Неравенство треугольника ]
Сложность: 4-
Классы: 8,9

Докажите, что в любом треугольнике сумма длин его медиан больше $ {\frac{{3}}{{4}}}$ периметра, но меньше периметра.

Прислать комментарий     Решение


Страница: << 46 47 48 49 50 51 52 >> [Всего задач: 289]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .