ЗАДАЧИ
problems.ru |
О проекте
|
Об авторах
|
Справочник
Каталог по темам | по источникам | |
|
|
|||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Версия для печати
Убрать все задачи
Вычислите производящие функции следующих
последовательностей:
Во сколько раз сумма чисел, стоящих в сто первой строке треугольника Паскаля, больше суммы чисел, стоящих в сотой строке? а) (1 + x)-1; б) (1 - x)-1; в) (1 - x)-2. На шахматной доске 8×8 отмечены центры всех полей. Можно ли тринадцатью прямыми, не проходящими через эти центры, разбить доску на части так, чтобы внутри каждой из них лежало не более одной отмеченной точки? Каждый из людей, когда-либо живших на земле, сделал определённое число рукопожатий. В таблице 8×8 все четыре угловые клетки закрашены чёрным цветом, все остальные – белым. Докажите, что с помощью перекрашивания строк и столбцов нельзя добиться того, чтобы все клетки стали белыми. Под перекрашиванием строки или столбца понимается изменение цвета всех клеток в строке или столбце. В квадрате 25×25 стоят числа 1 и –1. Вычислили все произведения этих чисел по строкам и по столбцам. Дан трехгранный угол с вершиной O. Можно ли найти такое плоское сечение ABC, чтобы углы OAB, OBA, OBC, OCB, OAC, OCA были острыми? Квадратная таблица в n² клеток заполнена числами от 1 до n так, что в каждой строке и каждом столбце встречаются все эти числа. Если n нечётно и таблица симметрична относительно диагонали, идущей из левого верхнего угла в правый нижний, то на этой диагонали встретятся все эти числа 1, 2, 3,..., n. Доказать. На плоскости даны две прямые, пересекающиеся под острым углом. В направлении одной из прямых производится сжатие с коэффициентом 1/2. Доказать, что найдется точка, расстояние от которой до точки пересечения прямых увеличится. Найти все действительные решения системы
Дан
На доске написано число 12. В течение каждой минуты число либо умножают, либо делят либо на 2, либо на 3, и результат записывают на доску вместо исходного числа. Докажите, что число, которое будет написано на доске ровно через час, не будет равно 54. На столе лежат в ряд пять монет: средняя – орлом вверх, а остальные – решкой вверх. За одну операцию разрешается одновременно перевернуть ровно три монеты, лежащие рядом. Можно ли, выполнив такую операцию несколько раз, добиться того, чтобы все пять монет лежали орлом вверх? Даны шесть слов:
В остроугольном треугольнике ABC на сторонах AC и AB отметили точки K и L соответственно, причём прямая KL параллельна BC и KL = KC. На стороне BC выбрана точка M так, что ∠KMB = ∠BAC. Докажите, что KM = AL. Зайчиха купила для своих семерых зайчат семь барабанов разных размеров и семь пар палочек разной длины. Если зайчонок видит, что у него и барабан больше, и палочки длиннее, чем у кого-то из братьев, он начинает громко барабанить. Какое наибольшее число зайчат сможет начать барабанить? Пусть M и N – середины сторон CD и DE правильного шестиугольника ABCDEF. Найдите угол между прямыми AM и BN. Шестиугольник ABCDEF – правильный, K и M – середины отрезков BD и EF. Докажите, что треугольник AMK – правильный. Фили и Кили играют в шахматы. Кроме шахматной доски у них есть одна ладья, которую они поставили в правый нижний угол, и делают ей ходы по очереди, причем ходить разрешается только вверх или влево (на любое количество клеток). Кто не может сделать хода, тот проиграл. Кили ходит первым. Кто выиграет при правильной игре? Произведение двух натуральных чисел, каждое из которых не делится нацело на 10, равно 1000. Найдите их сумму. В треугольнике ABC известно, что AA1 – медиана,
AA2 – биссектриса, K – такая точка на AA1 ,
для которой KA2 || AC . Докажите, что
AA2 |
Страница: 1 2 3 4 5 6 7 >> [Всего задач: 100]
Hа плоскости даны две окружности C1 и C2 с центрами O1 и O2 и радиусами 2R и R соответственно (O1O2 > 3R). Hайдите геометрическое место центров тяжести треугольников, у которых одна вершина лежит на C1, а две другие — на C2.
Длины сторон треугольника ABC равны a, b и c (AB = c, BC = a, CA = b и a < b < c). На лучах BC и AC отмечены соответственно такие точки B1 и A1, что BB1 = AA1 = c. На лучах CA и BA отмечены соответственно такие точки C2 и B2, что CC2 = BB2 = a. Найти A1B1 : C2B2.
В треугольнике ABC на стороне AB выбраны точки K и L так, что AK = BL, а на стороне BC — точки M и N так, что CN = BM. Докажите, что KN + LM ≥ AC.
В четырехугольнике $ABCD$ $\angle B=\angle D$ и $AD=CD$. Окружность, вписанная в треугольник $ABC$, касается сторон $BC$ и $AB$ в точках $E$ и $F$ соответственно. Докажите, что середины отрезков $AC$, $BD$, $AE$ и $CF$ лежат на одной окружности.
Cередины противолежащих сторон шестиугольника соединены отрезками. Oказалось, что точки попарного пересечения этих отрезков образуют равносторонний треугольник. Докажите, что проведённые отрезки равны.
Страница: 1 2 3 4 5 6 7 >> [Всего задач: 100]
|
© 2004-...
МЦНМО
(о копирайте)
|
Пишите нам
|
![]() |
Проект осуществляется при поддержке