ЗАДАЧИ
problems.ru |
О проекте
|
Об авторах
|
Справочник
Каталог по темам | по источникам | |
|
|
||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Версия для печати
Убрать все задачи Найдите все положительные корни уравнения xx + x1–x = x + 1. Решить уравнение 2-log sin x cos x=log cos x sin x. Найдите такое значение $a > 1$, при котором уравнение $a^x = \log_a x$ имеет единственное решение. Внутри параллелограмма ABCD выбрана произвольная точка Р и проведены отрезки РА, РВ, РС и PD. Площади трёх из образовавшихся треугольников равны 1, 2 и 3 (в каком-то порядке). Какие значения может принимать площадь четвёртого треугольника? Какую наибольшую площадь может иметь треугольник, стороны которого
a,b,c заключены в следующих пределах:
На сторонах AB и BC треугольника ABC выбраны соответственно точки X и Y так, что ∠AXY = 2∠C, ∠CYX = 2∠A. Пусть P(x) – многочлен со старшим коэффициентом 1, а последовательность целых чисел a1, a2, ... такова, что P(a1)= 0, P(a2) = a1, P(a3) = a2 и т. д. Числа в последовательности не повторяются. Какую степень может иметь P(x)? Прямоугольник разделён двумя вертикальными и двумя горизонтальными отрезками на девять прямоугольных частей. Площади некоторых из получившихся частей указаны на рисунке. Найдите площадь верхней правой части. На бумаге "в клеточку" нарисован выпуклый многоугольник M, так что все его вершины находятся в вершинах клеток и ни одна из его сторон не идёт по вертикали или горизонтали. Докажите, что сумма длин вертикальных отрезков линий сетки, заключённых внутри M, равна сумме длин горизонтальных отрезков линий сетки внутри M. Найдите объём правильной треугольной пирамиды со стороной основания a и боковым ребром b . Найдите объём правильной четырёхугольной пирамиды со стороной основания a и высотой h . Невыпуклый n-угольник разрезали прямолинейным разрезом на три части, после чего из двух частей сложили многоугольник, равный третьей части. Может ли n равняться
Пусть α , β , γ , τ – такие положительные числа, что
при всех x
Докажите, что α=γ или α=τ . В трапеции ABCD (AD || BC) из точки Е – середины CD провели перпендикуляр EF к прямой AB. Найдите площадь трапеции, если АВ = 5, EF = 4. Приведенные квадратные трёхчлены f(x) и g(x) принимают отрицательные значения на непересекающихся интервалах. Прямая a , не лежащая в плоскости α , параллельна некоторой прямой этой плоскости. Докажите, что прямая a параллельна плоскости α .
В круглый бокал, осевое сечение которого — график функции y = x4, опускают
вишенку — шар радиуса r. При каком наибольшем r шар коснется нижней
точки дна? (Другими словами, каков максимальный радиус r круга, лежащего в
области y На катетах и гипотенузе прямоугольного треугольника построены квадраты, расположенные вне треугольника. Вычислить площадь шестиугольника, вершины которого совпадают с теми вершинами квадратов, которые не принадлежат данному треугольнику. Длина гипотенузы c и сумма длин катетов s известны. |
Страница: 1 2 >> [Всего задач: 7]
В квадрате ABCD площади 1 сторона AD продолжена за точку D и на продолжении взята точка O, OD = 3. Из точки O проведены два луча. Первый пересекает отрезок CD в точке M и отрезок AB в точке N, второй пересекает отрезок CD в точке L и отрезок BC в точке K, ON = a, ∠BKL = α. Найдите площадь многоугольника BKLMN.
Два прямоугольника положены на плоскость так, что их границы имеют восемь точек пересечения. Эти точки соединены через одну. Доказать, что площадь полученного четырёхугольника не изменится при поступательном перемещении одного из прямоугольников.
На катетах и гипотенузе прямоугольного треугольника построены квадраты, расположенные вне треугольника. Вычислить площадь шестиугольника, вершины которого совпадают с теми вершинами квадратов, которые не принадлежат данному треугольнику. Длина гипотенузы c и сумма длин катетов s известны.
На сторонах правильного 2009-угольника отметили по точке. Эти точки являются вершинами 2009-угольника площади S. Каждую из отмеченных точек отразили относительно середины стороны, на которой эта точка лежит. Докажите, что 2009-угольник с вершинами в отражённых точках также имеет площадь S.
На бумаге "в клеточку" нарисован выпуклый многоугольник M, так что все его вершины находятся в вершинах клеток и ни одна из его сторон не идёт по вертикали или горизонтали. Докажите, что сумма длин вертикальных отрезков линий сетки, заключённых внутри M, равна сумме длин горизонтальных отрезков линий сетки внутри M.
Страница: 1 2 >> [Всего задач: 7]
|
© 2004-...
МЦНМО
(о копирайте)
|
Пишите нам
|
![]() |
Проект осуществляется при поддержке