ЗАДАЧИ
problems.ru |
О проекте
|
Об авторах
|
Справочник
Каталог по темам | по источникам | |
|
Версия для печати
Убрать все задачи Прямые, касающиеся окружности с центром O в точках A и B, пересекаются в точке M. Найдите хорду AB, если отрезок MO делится ею на отрезки, равные 2 и 18. Точка внутри выпуклого четырёхугольника соединена с вершинами. Получились четыре равных треугольника. Три простых числа p, q и r, большие 3, образуют арифметическую прогрессию: q = p + d, r = p + 2d. Докажите, что d делится на 6. а) Из какого минимального числа кусков проволоки можно спаять каркас куба?
Точка M делит сторону BC треугольника ABC в отношении
BM : MC = 2 : 5, Известно, что
Решите уравнение
(x2 + x)2 +
В хоккейном турнире принимают участие n команд. Каждая команда встречается с каждой по одному разу, при этом выигравшей команде присуждается 2 очка, сыгравшей вничью – 1, проигравшей – 0 очков. Какой максимальный разрыв в очках может быть между командами, занявшими соседние места? Найдите все натуральные числа, делящиеся на 30 и имеющие ровно 30 различных делителей. α, β и γ - углы треугольника ABC. Докажите, что
Группа восьмиклассников решила поехать во время каникул на экскурсию в Углич. Ежемесячно каждый ученик вносил определённое количество рублей (без копеек), одинаковое для всех, и в течение пяти месяцев было собрано 49685 руб. Сколько было в группе учеников и какую сумму внёс каждый? Одноклассники Аня, Боря и Вася живут на одной лестничной клетке. В школу они идут с постоянными, но различными скоростями, не оглядываясь и не дожидаясь друг друга. Но если кто-то из них успевает догнать другого, то дальше он замедляется, чтобы идти вместе с тем, кого догнал. Докажите, что ha = bc/2R.
На сколько нулей оканчивается число 100!? В левом нижнем углу клетчатой доски n×n стоит конь. Известно, что наименьшее число ходов, за которое конь может дойти до правого верхнего угла, равно наименьшему числу ходов, за которое он может дойти до правого нижнего угла. Найдите n.
К окружности проведены касательные, касающиеся её в концах диаметра AB. Произвольная касательная к окружности пересекает эти касательные в точках K и M. Докажите, что произведение AK . BM постоянно.
(sin x, sin y, sin z) – возрастающая арифметическая прогрессия. Может ли последовательность (cos x, cos y, cos z) также являться арифметической прогрессией? 30 человек голосуют по пяти предложениям. Сколькими способами могут распределиться голоса, если каждый голосует только за одно предложение и учитывается лишь количество голосов, поданных за каждое предложение? Из первых k простых чисел 2, 3, 5, ..., pk (k > 5) составлены всевозможные произведения, в которые каждое из чисел входит не более одного раза (например, 3·5, 3·7·... ·pk, 11 и т. д.). Обозначим сумму всех таких чисел через S. Доказать, что S + 1 разлагается в произведение более 2k простых сомножителей.
В параллелограмме лежат две окружности, касающиеся друг друга
и трёх сторон параллелограмма каждая. Радиус одной из окружностей
равен 1. Известно, что один из отрезков стороны параллелограмма от
вершины до точки касания равен
|
Страница: << 12 13 14 15 16 17 18 >> [Всего задач: 159]
В равнобочную трапецию ABCD (
BC
Точка M – середина хорды AB. Хорда CD пересекает AB в точке M. На отрезке CD как на диаметре построена полуокружность. Точка E лежит на этой полуокружности, и ME – перпендикуляр к CD. Найдите угол AEB.
В ромб ABCD вписана окружность. Прямая, касающаяся этой окружности в точке P, пересекает стороны AB, BC и продолжение стороны AD соответственно в точках N, Q и M, причём MN : NP : PQ = 7 : 1 : 2. Найдите углы ромба.
На катете BC прямоугольного треугольника ABC как на диаметре построена окружность, пересекающая гипотенузу в точке D так, что AD : BD = 1 : 3. Высота, опущенная из вершины C прямого угла на гипотенузу, равна 3. Найдите катет BC.
В параллелограмме лежат две окружности, касающиеся друг друга
и трёх сторон параллелограмма каждая. Радиус одной из окружностей
равен 1. Известно, что один из отрезков стороны параллелограмма от
вершины до точки касания равен
Страница: << 12 13 14 15 16 17 18 >> [Всего задач: 159]
|
© 2004-...
МЦНМО
(о копирайте)
|
Пишите нам
|
![]() |
Проект осуществляется при поддержке