Страница: 1
2 3 4 5 6 7 >> [Всего задач: 260]
|
|
Сложность: 3 Классы: 10,11
|
Докажите, что площадь проекции куба с ребром 1 на любую плоскость численно равна длине его проекции на прямую, перпендикулярную этой плоскости.
|
|
Сложность: 3 Классы: 10,11
|
Как расположены плоскости симметрии ограниченного тела, если оно имеет две оси
вращения? (Осью вращения тела называется прямая, после поворота вокруг которой
на любой угол тело совмещается само с собой.)
|
|
Сложность: 3 Классы: 10,11
|
Угол между плоскостями равен
α . Найдите площадь ортогональной
проекции правильного шестиугольника со стороной 1, лежащего
в одной из плоскостей, на другую плоскость.
|
|
Сложность: 3 Классы: 10,11
|
Стороны треугольника равны 5, 6 и 7. Найдите площадь
ортогональной проекции треугольника на плоскость, которая образует
с плоскостью треугольника угол, равный наименьшему углу этого
треугольника.
|
|
Сложность: 3 Классы: 10,11
|
Отрезки
AD ,
BD и
CD попарно перпендикулярны. Известно, что
площадь треугольника
ABC равна
S , а площадь треугольника
ABD
равна
Q . Найдите площадь ортогональной проекции треугольника
ABD
на плоскость
ABC .
Страница: 1
2 3 4 5 6 7 >> [Всего задач: 260]