Loading [Contrib]/a11y/accessibility-menu.js
ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Выбрано 18 задач
Версия для печати
Убрать все задачи

Дана треугольная пирамида $SABC$, основание которой – равносторонний треугольник $ABC$, а все плоские углы при вершине $S$ равны $\alpha$. При каком наименьшем $\alpha$ можно утверждать, что эта пирамида правильная?

Вниз   Решение


Сторона треугольника равна 2$ \sqrt{7}$, а две другие стороны образуют угол в 30o и относятся как 1 : 2$ \sqrt{3}$. Найдите эти стороны.

ВверхВниз   Решение


Автор: Панов М.Ю.

Прямая l перпендикулярна одной из медиан треугольника. Серединные перпендикуляры к сторонам этого треугольника пересекают прямую l в трёх точках. Докажите, что одна из них является серединой отрезка, образованного двумя оставшимися.

ВверхВниз   Решение


В треугольнике ABC угол A равен  120o. Докажите, что из отрезков длиной a, b, b + c можно составить треугольник.

ВверхВниз   Решение


Два отрезка AB и CD пересекаются в точке O, которая является серединой каждого из них. Докажите равенство треугольников ACD и BDC.

ВверхВниз   Решение


Пусть P – основание перпендикуляра, опущенного из вершины C меньшего основания BC равнобедренной трапеции ABCD на её большее основание AD. Найдите DP и AP, если основания трапеции равны a и b  (a > b).

ВверхВниз   Решение


Точка P лежит на описанной окружности треугольника ABC. Построим треугольник A1B1C1, стороны которого параллельны отрезкам PA, PB, PC
(B1C1 || PA,  C1A1 || PB,  A1B1 || PC). Через точки A1, B1, C1 проведены прямые, параллельные соответственно BC, CA и AB. Докажите, что эти прямые пересекаются в точке, лежащей на описанной окружности треугольника A1B1C1.

ВверхВниз   Решение


Четырёхугольник АВСD – вписанный. Лучи АВ и пересекаются в точке M, а лучи ВС и AD – в точке N. Известно, что  ВМ = DN.
Докажите, что  CM = CN.

ВверхВниз   Решение


Расстояния от концов диаметра окружности до некоторой касательной равны a и b. Найдите радиус окружности.

ВверхВниз   Решение


По заданному ненулевому x значение x8 можно найти за три арифметических действия: x2 = x · x, x4 = x2 · x2, x8 = x4 · x4, а x15 за пять действий: первые три — те же самые, затем x8 · x8 = x16 и x16 : x = x16. Докажите, что

а) x16 можно найти за 12 действий (умножений и делений);

б) для любого натурального n возвести x в n-ю степень можно не более чем за 1 + 1,5 · log2n действий.

ВверхВниз   Решение


В прямоугольном треугольнике ABC катет AC = 15 и катет BC = 20. На гипотенузе AB отложен отрезок AD, равный 4, и точка D соединена с C. Найдите CD.

ВверхВниз   Решение


В прямоугольный треугольник с гипотенузой, равной 26, вписана окружность радиуса 4. Найдите периметр треугольника.

ВверхВниз   Решение


Существуют 1000 последовательных натуральных чисел, среди которых нет ни одного простого числа (например,  1001! + 2,  1001! + 3, ...,   1001! + 1001).
А существуют ли 1000 последовательных натуральных чисел, среди которых ровно пять простых чисел?

ВверхВниз   Решение


Периметр треугольника равен 28, середины сторон соединены отрезками. Найдите периметр полученного треугольника.

ВверхВниз   Решение


На сторонах AB и CB треугольника ABC откладываются равные отрезки произвольной длины AD и CE. Найти геометрическое место середин отрезков DE.

ВверхВниз   Решение


Через точку D, взятую на стороне AB треугольника ABC, проведена прямая, параллельная AC и пересекающая сторону BC в точке E.
Докажите, что прямые AE, CD и медиана, проведённая из вершины B, пересекаются в одной точке.

ВверхВниз   Решение


Меньшее основание равнобедренной трапеции равно боковой стороне, а диагональ перпендикулярна боковой стороне. Найдите углы трапеции.

ВверхВниз   Решение


Докажите, что окружности, описанные около трёх треугольников, отсекаемых от остроугольного треугольника средними линиями, имеют общую точку.

Вверх   Решение

Задачи

Страница: << 1 2 3 4 5 >> [Всего задач: 24]      



Задача 109681  (#98.5.9.6)

Темы:   [ Теорема Фалеса и теорема о пропорциональных отрезках ]
[ Биссектриса угла ]
[ Признаки и свойства равнобедренного треугольника. ]
[ Средняя линия треугольника ]
[ Параллельные прямые, свойства и признаки. Секущие ]
Сложность: 4
Классы: 7,8,9

Автор: Сонкин М.

В треугольнике ABC  (AB > BC)  проведены медиана BM и биссектриса BL. Прямая, проходящая через точку M параллельно AB, пересекает BL в точке D, а прямая, проходящая через L параллельно BC, пересекает BM в точке E. Докажите, что прямые ED и BL перпендикулярны.

Прислать комментарий     Решение

Задача 109682  (#98.5.9.7)

Темы:   [ Разбиения на пары и группы; биекции ]
[ Примеры и контрпримеры. Конструкции ]
Сложность: 5
Классы: 8,9,10

Ювелир сделал незамкнутую цепочку из N>3 пронумерованных звеньев. Капризная заказчица потребовала изменить порядок звеньев в цепочке. Из вредности она заказала такую незамкнутую цепочку, чтобы ювелиру пришлось раскрыть как можно больше звеньев. Сколько звеньев придется раскрыть?
Прислать комментарий     Решение


Задача 109683  (#98.5.9.8)

Темы:   [ Алгоритм Евклида ]
[ Процессы и операции ]
Сложность: 4
Классы: 7,8,9

На доске написаны два различных натуральных числа a и b. Меньшее из них стирают, и вместо него пишут число    (которое может уже оказаться нецелым). С полученной парой чисел делают ту же операцию и т.д. Докажите, что в некоторый момент на доске окажутся два равных натуральных числа.

Прислать комментарий     Решение

Задача 109668  (#98.5.10.1)

Темы:   [ Теорема Виета ]
[ Графики и ГМТ на координатной плоскости ]
[ Кубические многочлены ]
Сложность: 4-
Классы: 9,10,11

Прямые, параллельные оси Ox, пересекают график функции  y = ax³ + bx² + cx + d:  первая – в точках A, D и E, вторая – в точках B, C и F (см. рис.). Докажите, что длина проекции дуги CD на ось Ox равна сумме длин проекций дуг AB и EF.

Прислать комментарий     Решение

Задача 109669  (#98.5.10.2)

Темы:   [ Выпуклые многоугольники ]
[ Наименьший или наибольший угол ]
[ Длины сторон (неравенства) ]
[ Теорема косинусов ]
Сложность: 5-
Классы: 9,10,11

Даны два выпуклых многоугольника. Известно, что расстояние между любыми двумя вершинами первого не больше 1 , расстояние между любыми двумя вершинами второго также не больше 1, а расстояние между любыми двумя вершинами разных многоугольников больше, чем 1/ . Докажите, что многоугольники не имеют общих внутренних точек.
Прислать комментарий     Решение


Страница: << 1 2 3 4 5 >> [Всего задач: 24]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .