Loading [Contrib]/a11y/accessibility-menu.js
ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Главы:
Фильтр
Сложность с по   Класс с по  
Выбрано 15 задач
Версия для печати
Убрать все задачи

Найти наименьшее натуральное N, дающее остаток 1 по модулю 2, 2 по модулю 3, ..., 7 по модулю 8.

Вниз   Решение


Грани некоторого многогранника раскрашены в два цвета так, что соседние грани имеют разные цвета. Известно, что все грани, кроме одной, имеют число рёбер, кратное 3. Доказать, что и эта одна грань имеет кратное 3 число рёбер.

ВверхВниз   Решение


Постройте радикальную ось двух непересекающихся окружностей S1 и S2.

ВверхВниз   Решение


Верно ли, что любой треугольник можно разбить на четыре равнобедренных треугольника?

ВверхВниз   Решение


Существует ли ломаная, пересекающая все рёбра картинки по одному разу?

ВверхВниз   Решение


Доказать, что в двудольном плоском графе  E ≥ 2F,  если  E ≥ 2  (E – число рёбер, F – число областей).

ВверхВниз   Решение


Найдите наибольшее из чисел  5100, 691, 790, 885.

ВверхВниз   Решение


Доказать, что квадрат натурального числа не может оканчиваться на две нечётные цифры.

ВверхВниз   Решение


Существует ли такое натуральное x, что  x² + x + 1  делится на 1985?

ВверхВниз   Решение


На линейке отмечены три деления: 0, 2 и 5. Как отложить с её помощью отрезок, равный 6?

ВверхВниз   Решение


Продолжения сторон AB и CD четырехугольника ABCD пересекаются в точке F, а продолжения сторон BC и AD — в точке E. Докажите, что окружности с диаметрами AC, BD и EF имеют общую радикальную ось, причем на ней лежат ортоцентры треугольников  ABE, CDE, ADF и BCF.

ВверхВниз   Решение


На сторонах шестиугольника было записано шесть чисел, а в каждой вершине – число, равное сумме двух чисел на смежных с ней сторонах. Затем все числа на сторонах и одно число в вершине стерли. Можно ли восстановить число, стоявшее в вершине?

ВверхВниз   Решение


На сторонах треугольника ABC внешним образом построены квадраты с центрами P, Q и R. На сторонах треугольника PQR внутренним образом построены квадраты. Докажите, что их центры являются серединами сторон треугольника ABC.

ВверхВниз   Решение


У юного художника была одна банка синей и одна банка жёлтой краски, каждой из которых хватает на покраску 38 дм2 площади. Использовав всю эту краску, он нарисовал картину: синее небо, зелёную траву и жёлтое солнце. Зелёный цвет он получал, смешивая две части жёлтой краски и одну часть синей. Какая площадь на его картине закрашена каждым цветом, если площадь травы на картине на 6 дм2 больше, чем площадь неба?

ВверхВниз   Решение


Через вершину A квадрата ABCD проведены прямые l1 и l2, пересекающие его стороны. Из точек B и D опущены перпендикуляры BB1, BB2, DD1 и DD2 на эти прямые. Докажите, что отрезки B1B2 и D1D2 равны и перпендикулярны.

Вверх   Решение

Задачи

Страница: << 7 8 9 10 11 12 13 >> [Всего задач: 1956]      



Задача 56496  (#01.040)

Темы:   [ Вспомогательные равные треугольники ]
[ Теорема Фалеса и теорема о пропорциональных отрезках ]
[ Прямоугольники и квадраты. Признаки и свойства ]
Сложность: 3+
Классы: 8,9

Точка K – середина стороны AB квадрата ABCD, а точка L делит диагональ AC в отношении  AL : LC = 3 : 1.  Докажите, что угол KLD прямой.

Прислать комментарий     Решение

Задача 56497  (#01.041)

Темы:   [ Вспомогательные равные треугольники ]
[ Прямоугольники и квадраты. Признаки и свойства ]
Сложность: 3+
Классы: 8,9

Через вершину A квадрата ABCD проведены прямые l1 и l2, пересекающие его стороны. Из точек B и D опущены перпендикуляры BB1, BB2, DD1 и DD2 на эти прямые. Докажите, что отрезки B1B2 и D1D2 равны и перпендикулярны.

Прислать комментарий     Решение

Задача 56498  (#01.042)

Темы:   [ Прямоугольные треугольники (прочее) ]
[ Поворот помогает решить задачу ]
[ Средняя линия трапеции ]
Сложность: 4-
Классы: 8,9

На катетах CA и CB равнобедренного прямоугольного треугольника ABC выбраны точки D и E так, что  CD = CE.  Продолжения перпендикуляров, опущенных из точек D и C на прямую AE, пересекают гипотенузу AB в точках K и L. Докажите, что  KL = LB.

Прислать комментарий     Решение

Задача 56499  (#01.043)

Темы:   [ Вписанные четырехугольники (прочее) ]
[ Прямоугольники и квадраты. Признаки и свойства ]
[ Вспомогательные равные треугольники ]
[ Признаки и свойства параллелограмма ]
Сложность: 4
Классы: 8,9

На сторонах AB, BC, CD и DA вписанного четырёхугольника ABCD, длины которых равны a, b, c и d, внешним образом построены прямоугольники размером a×с, b×d, с×a и d×b. Докажите, что их центры являются вершинами прямоугольника.

Прислать комментарий     Решение

Задача 56500  (#01.044)

Темы:   [ Шестиугольники ]
[ Вписанные и описанные многоугольники ]
[ Правильный (равносторонний) треугольник ]
[ Вспомогательные равные треугольники ]
Сложность: 4+
Классы: 8,9

Шестиугольник ABCDEF вписан в окружность радиуса R с центром O, причём  AB = CD = EF = R.  Докажите, что точки попарного пересечения описанных окружностей треугольников BOC, DOE и FOA, отличные от точки O, являются вершинами правильного треугольника со стороной R.

Прислать комментарий     Решение

Страница: << 7 8 9 10 11 12 13 >> [Всего задач: 1956]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .