ЗАДАЧИ
problems.ru |
О проекте
|
Об авторах
|
Справочник
Каталог по темам | по источникам | |
|
Версия для печати
Убрать все задачи Дана окружность с центром в начале координат. Квадрат разрезали на n прямоугольников размером ai×bi, i = 1, ..., n. За круглым столом сидят 10 человек, каждый из которых либо рыцарь, который всегда говорит правду, либо лжец, который всегда лжёт. Двое из них заявили: "Оба моих соседа – лжецы", а остальные восемь заявили: "Оба моих соседа – рыцари". Сколько рыцарей могло быть среди этих 10 человек? Решить в целых числах уравнение 1/a + 1/b + 1/c = 1. Найдите трехзначное число, которое представимо в виде суммы и двух, и трех, и четырех, и пяти, и шести квадратов различных натуральных чисел. Достаточно привести один пример. Сфера единичного радиуса касается всех ребер некоторой треугольной призмы. Чему может быть равен объем этой призмы? Ответ округлите до сотых. k, l, m – натуральные числа. Докажите, что 2k+l + 2k+m + 2l+m ≤ 2k+l+m+1 + 1. Имеется куб размером 10×10×10, состоящий из маленьких единичных кубиков. В центре O одного из угловых кубиков сидит кузнечик. Он может прыгать в центр кубика, имеющего общую грань с тем, в котором кузнечик находится в данный момент; причём так, чтобы расстояние до точки O увеличивалось. Сколькими способами кузнечик может допрыгать до кубика, противоположного исходному? Имеются чашечные весы, которые находятся в равновесии, если разность масс на их чашах не превосходит 1 г, а также гири массами ln 3, ln 4, ..., ln 79 г. В игре Тантрикс-солитер возможны фишки 14 типов: Каждую из них можно поворачивать, но нельзя переворачивать: именно поэтому первые 2 фишки разные – их нельзя получить друг из друга поворотом. Их разрешается прикладывать друг к другу так, чтобы линии одного цвета были продолжениями друг друга. У Саши было по одной фишке каждого типа, и он мог выложить их так, чтобы все синие линии образовывали «петлю», и при этом чтобы в картинке не было «дырок»:
Саша потерял фишку Выпуклый пятиугольник ABCDE таков, что AB || CD, BC || AD, AC || DE, CE ⊥ BC. Докажите, что EC – биссектриса угла BED. Внутри выпуклого четырехугольника A1A2B2B1 нашлась такая точка C, что треугольники CA1A2 и CB2B1 – правильные. Точки C1 и C2 симметричны точке C относительно прямых A2B2 и A1B1 соответственно. Докажите, что треугольники A1B1C1 и A2B2C2 подобны. На доске был изображен пятиугольник, вписанный в окружность. Маша измерила его углы и у нее получилось, что они равны 80°, 90°, 100°, 130° и 140° (именно в таком порядке). Не ошиблась ли Маша? В театральной труппе 60 актеров. Каждые два хотя бы раз играли в одном и том же спектакле. В каждом спектакле занято не более 30 актеров. Даны 10 натуральных чисел, не превышающих 91. Докажите, что отношение некоторых двух из этих чисел принадлежит отрезку [2/3, 3/2]. Никита нарисовал и закрасил выпуклый пятиугольник с периметром $20$ и площадью $21$. Таня закрасила все точки, находящиеся на расстоянии не более $1$ от закрашенных Никитой (см. рис.). На сколько увеличилась закрашенная площадь? Ответ округлите до сотых. Несократимая дробь $\frac{a}{b}$ такова, что $$ \frac{a}{b}=\frac{999}{1999}+\frac{999}{1999}\cdot \frac{998}{1998}+\frac{999}{1999}\cdot\frac{998}{1998}\cdot \frac{997}{1997}+\ldots + \frac{999}{1999}\cdot \frac{998}{1998}\cdot \ldots \cdot \frac{1}{1001}. $$ Найдите $a$ и $b$. Внутри параллелограмма ABCD расположена точка М. Сравните периметр параллелограмма и сумму расстояний от М до его вершин. Положительные числа x, y, z таковы, что xyz = 1. Докажите, что Докажите, что в равенстве (x1 + ... + xm)n = 100 идущих подряд натуральных чисел отсортировали по возрастанию суммы цифр, а числа с одинаковой суммой цифр – просто по возрастанию. Могли ли числа 2010 и 2011 оказаться рядом? К граням тетраэдра восстановлены перпендикуляры в их точках пересечения медиан. |
Страница: << 1 2 3 4 5 >> [Всего задач: 24]
Разрежьте неравносторонний треугольник на четыре подобных треугольника, среди которых не все одинаковы.
Квадрат разрезали на n прямоугольников размером ai×bi, i = 1, ..., n.
Дана окружность с центром в начале координат.
Планета "Тетраинкогнито", покрытая "океаном", имеет форму правильного тетраэдра с ребром 900 км.
К граням тетраэдра восстановлены перпендикуляры в их точках пересечения медиан.
Страница: << 1 2 3 4 5 >> [Всего задач: 24]
|
© 2004-...
МЦНМО
(о копирайте)
|
Пишите нам
|
![]() |
Проект осуществляется при поддержке