Processing math: 94%
ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Годы:
Фильтр
Сложность с по   Класс с по  
Выбрано 14 задач
Версия для печати
Убрать все задачи

Купец случайно перемешал конфеты первого сорта (по 3 руб. за фунт) и конфеты второго сорта (по 2 руб. за фунт). По какой цене надо продавать эту смесь, чтобы выручить ту же сумму, если известно, что первоначально общая стоимость всех конфет первого сорта была равна общей стоимости всех конфет второго сорта?

Вниз   Решение


Стороны треугольника относятся как  5 : 4 : 3.  Найдите отношения отрезков сторон, на которые они делятся точками касания с вписанной окружностью.

ВверхВниз   Решение


Две окружности радиуса r касаются друг друга. Кроме того, каждая из них касается изнутри третьей окружности радиуса R в точках A и B соответственно. Найдите радиус R, если  AB = 11,  r = 5.

ВверхВниз   Решение


Решите в натуральных числах уравнение:
  а)  x² – y² = 31;
  б)  x² – y² = 303.

ВверхВниз   Решение


В алфавите племени Бум-Бум шесть букв. Словом является любая последовательность из шести букв, в которой есть хотя бы две одинаковые буквы.
Сколько слов в языке племени Бум-Бум?

ВверхВниз   Решение


Трое играют в настольный теннис, причем игрок, проигравший партию, уступает место игроку, не участвовавшему в ней. В итоге оказалось, что первый игрок сыграл 10 партий, второй – 21. Сколько партий сыграл третий игрок?

ВверхВниз   Решение


Команды А, Б, В, Г и Д участвовали в эстафете. До соревнований пять болельщиков, высказали следующие прогнозы.
  1) команда Д займет 1-е место, команда В – 2-е;
  2) команда А займет 2-е место, Г – 4-е;
  3) В – 3-е место, Д – 5-е;
  4) В – 1-е место, Г – 4-е;
  5) А – 2-е место, В – 3-е.
В каждом прогнозе одна часть подтвердилась, а другая – нет. Какое место заняла каждая из команд?

ВверхВниз   Решение


Решить систему уравнений:
   3xyz – x³ – y³ – z³ = b³,
   x + y + z = 2b,
   x² + y² + z² = b².

ВверхВниз   Решение


Точка M лежит вне угла AOB, OC – биссектриса этого угла. Докажите, что угол MOC равен полусумме углов AOM и BOM.

ВверхВниз   Решение


Пастух пас стадо из 100 голов. За это ему заплатили 200 р. За каждого быка заплатили 20 р., за корову – 10 р., а за теленка – 1 р.
Сколько в стаде быков, сколько коров и сколько телят?

ВверхВниз   Решение


Можно ли найти четыре целых числа, сумма и произведение которых являются нечётными числами?

ВверхВниз   Решение


Сколькими способами можно поставить на шахматную доску так, чтобы они не били друг друга
  а) две ладьи;   б) двух королей;  в) двух слонов;   г) двух коней;   д) двух ферзей?
Все фигуры одного цвета.

ВверхВниз   Решение


Решить систему уравнений:
   x³ – y³ = 26,
   x²y – xy² = 6.

ВверхВниз   Решение


Построить треугольник ABC по точкам M и N — основаниям высот AM и BN — и прямой, на которой лежит сторона AB.

Вверх   Решение

Задачи

Страница: << 156 157 158 159 160 161 162 >> [Всего задач: 1982]      



Задача 67446

Темы:   [ Шахматные доски и шахматные фигуры ]
[ Примеры и контрпримеры. Конструкции ]
Сложность: 3+
Классы: 8,9,10,11

Можно ли на бесконечной клетчатой плоскости расставить бесконечное количество шахматных коней (не более одного коня в клетку) так, чтобы каждый конь бил ровно 5 других?
Прислать комментарий     Решение


Задача 67451

Темы:   [ Площадь треугольника (через высоту и основание) ]
[ Отношение площадей подобных треугольников ]
Сложность: 3+
Классы: 8,9,10,11

В треугольнике ABC с прямым углом C провели высоту CH. Окружность, проходящая через точки C и H, повторно пересекает отрезки AC, CB и BH в точках Q, P и R соответственно. Отрезки HP и CR пересекаются в точке T. Что больше: площадь треугольника CPT или сумма площадей треугольников CQH и HTR?

Прислать комментарий     Решение

Задача 67464

Темы:   [ Упорядочивание по возрастанию (убыванию) ]
[ Взвешивания ]
[ Линейные неравенства и системы неравенств ]
Сложность: 3+
Классы: 8,9,10,11

Кусок сыра массой 1 кг разрезали на n кусков массами меньше 600 г. Оказалось, что их нельзя разбить на две кучки так, чтобы масса каждой кучки была не меньше 400 г, но не больше 600 г (кучка может состоять из одного или нескольких кусков). Докажите, что найдутся три таких куска, что суммарная масса любых двух из них больше 600 г.
Прислать комментарий     Решение


Задача 76416

Тема:   [ Пирамида (прочее) ]
Сложность: 3+
Классы: 10,11

Пирамида, все боковые рёбра которой наклонены к плоскости основания под углом $ \varphi$, имеет в основании равнобедренный треугольник с углом $ \alpha$, заключённым между равными сторонами. Определить двугранный угол при ребре, соединяющем вершину пирамиды с вершиной угла $ \alpha$.
Прислать комментарий     Решение


Задача 76419

Тема:   [ Объем тетраэдра и пирамиды ]
Сложность: 3+
Классы: 10,11

Найти объём правильной четырёхугольной пирамиды, стороны основания которой a, а плоские углы при вершине равны углам наклона боковых рёбер к плоскости основания.
Прислать комментарий     Решение


Страница: << 156 157 158 159 160 161 162 >> [Всего задач: 1982]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .