Loading [Contrib]/a11y/accessibility-menu.js
ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Выбрано 25 задач
Версия для печати
Убрать все задачи

На вертикальную ось надели несколько колес со спицами. Вид сверху изображен на левом рисунке.


После этого колеса повернули. Новый вид сверху изображен на рисунке справа.
Могло ли колес быть:  а) три;  б) два?

Вниз   Решение


На столе лежат три красные палочки разной длины, сумма длин которых равняется 30 см, и пять синих палочек разной длины, сумма длин которых тоже равняется 30 см. Можно ли распилить те и другие палочки так, чтобы потом можно было расположить их парами, причём в каждой паре палочки были бы одинаковой длины, но разного цвета?

ВверхВниз   Решение


Число 1/42 разложили в бесконечную десятичную дробь. Затем вычеркнули 1997-ю цифру после запятой, а все цифры, стоящие справа от вычеркнутой цифры, сдвинули на 1 влево. Какое число больше: новое или первоначальное?

ВверхВниз   Решение


Дан угол ABC и прямая l . Параллельно прямой l с помощью циркуля и линейки проведите прямую, на которой стороны угла ABC высекают отрезок, равный данному.

ВверхВниз   Решение


Дан треугольник со сторонами 3, 4 и 5. Построены три круга радиусами 1 с центрами в вершинах треугольника.
Найдите суммарную площадь частей кругов, заключённых внутри треугольника.

ВверхВниз   Решение


Найдите геометрическом место ортоцентров (точек пересечения высот) всевозможных треугольников, вписанных в данную окружность.

ВверхВниз   Решение


Рассмотрим равенства:

2 + $\displaystyle \sqrt{3}$ = $\displaystyle \sqrt{4}$ + $\displaystyle \sqrt{3}$,
(2 + $\displaystyle \sqrt{3}$)2 = $\displaystyle \sqrt{49}$ + $\displaystyle \sqrt{48}$,
(2 + $\displaystyle \sqrt{3}$)3 = $\displaystyle \sqrt{676}$ + $\displaystyle \sqrt{675}$,
(2 + $\displaystyle \sqrt{3}$)4 = $\displaystyle \sqrt{9409}$ + $\displaystyle \sqrt{9408}$.

Обобщите результат наблюдения и докажите возникшие у вас догадки.

ВверхВниз   Решение


В треугольнике ABC проведена биссектриса CD прямого угла ACB; DM и DN являются соответственно высотами треугольников ADC и BDC.
Найдите AC, если известно, что  AM = 4,  BN = 9.

ВверхВниз   Решение


Назовём натуральные числа похожими, если они записываются с помощью одного и того же набора цифр (например, для набора цифр 1, 1, 2 похожими будут числа 112, 121, 211). Докажите, что существуют такие три похожих 1995-значных числа, в записи которых нет нулей, что сумма двух из них равна третьему.

ВверхВниз   Решение


Последовательность чисел a1, a2,..., an... образуется следующим образом:

a1 = a2 = 1; an = $\displaystyle {\frac{a_{n-1}^2+2}{a_{n-2}}}$        (n$\displaystyle \ge$3).

Доказать, что все числа в последовательности — целые.

ВверхВниз   Решение


Окружность радиуса 3 проходит через середины трёх сторон треугольника ABC, в котором углы при вершинах A и B равны 60o и 45o соответственно. Найдите площадь треугольника.

ВверхВниз   Решение


Доказать, что если в треугольнике ABC со стороной  BC = 1  радиус ra вневписанной окружности вдвое больше радиуса r вписанной окружности, то площадь треугольника численно равна 2r.

ВверхВниз   Решение


Члены Государственной Думы образовали фракции так, что для любых двух фракций A и B (не обязательно различных) – тоже фракция (через обозначается множество всех членов Думы, не входящих в C ). Докажите, что для любых двух фракций A и B A B – также фракция.

ВверхВниз   Решение


Автор: Фольклор

Каждый из учеников класса занимается не более чем в двух кружках, причём для любой пары учеников существует кружок, в котором они занимаются вместе. Докажите, что найдётся кружок, в котором занимается не менее ⅔ всего класса.

ВверхВниз   Решение


Средняя линия трапеции равна 6, а разность оснований равна 4. Найдите основания.

ВверхВниз   Решение


Даны три некомпланарных вектора. Существует ли четвёртый ненулевой вектор, перпендикулярный трём данным?

ВверхВниз   Решение


В классе 16 учеников. Каждый месяц учитель делит класс на две группы.
Какое наименьшее количество месяцев должно пройти, чтобы каждые два ученика в какой-то из месяцев оказались в разных группах?

ВверхВниз   Решение


Числа от 1 до 1000000 покрашены в два цвета – чёрный и белый. За ход разрешается выбрать любое число от 1 до 1000000 и перекрасить его и все числа, не взаимно простые с ним, в противоположный цвет. Вначале все числа были чёрными. Можно ли за несколько ходов добиться того, что все числа станут белыми?

ВверхВниз   Решение


На стороне AC треугольника ABC отметили точку E. Известно, что периметр треугольника ABC равен 25 см, периметр треугольника ABE равен 15 см, а периметр треугольника BCE – 17 см. Найдите длину отрезка BE.

ВверхВниз   Решение


Найдите среднюю линию трапеции, если известно, что она в полтора раза меньше большего основания и на 3 больше меньшего.

ВверхВниз   Решение


Расстояние между центрами окружностей больше суммы их радиусов.
Докажите, что середины отрезков четырёх общих касательных этих окружностей лежат на одной прямой.

ВверхВниз   Решение


При каком наименьшем $n$ для любого набора $A$ из $2007$ множеств найдется такой набор $B$ из $n$ множеств, что каждое множество набора $A$ является пересечением двух различных множеств набора $B$?

ВверхВниз   Решение


Автор: Фольклор

Существуют ли два одночлена, произведение которых равно –12а4b², а сумма является одночленом с коэффициентом 1?

ВверхВниз   Решение


Автор: Фольклор

В равнобокой трапеции AВСD основания AD и ВС равны 12 и 6 соответственно, а высота равна 4. Сравните углы ВАС и САD.

ВверхВниз   Решение


В данный прямоугольный треугольник вписать прямоугольник наибольшей площади так, чтобы все вершины прямоугольника лежали на сторонах треугольника.

Вверх   Решение

Задачи

Страница: 1 2 3 4 5 6 >> [Всего задач: 27]      



Задача 57230

Тема:   [ Треугольник (построения) ]
Сложность: 3
Классы: 8,9

Постройте точки X и Y на сторонах AB и BC треугольника ABC так, что AX = BY и XY| AC.
Прислать комментарий     Решение


Задача 57231

Тема:   [ Треугольник (построения) ]
Сложность: 3
Классы: 8,9

Постройте треугольник по сторонам a и b, если известно, что угол против одной из них в три раза больше угла против другой.
Прислать комментарий     Решение


Задача 64911

Темы:   [ Треугольник (построения) ]
[ Гомотетия: построения и геометрические места точек ]
Сложность: 3+
Классы: 8,9

Восстановите треугольник ABC по прямым lb и lc, содержащим биссектрисы углов B и C, и основанию биссектрисы угла A – точке L1.

Прислать комментарий     Решение

Задача 109002

Темы:   [ Треугольник (построения) ]
[ Отношения линейных элементов подобных треугольников ]
[ Четырехугольники (экстремальные свойства) ]
[ Неравенство Коши ]
Сложность: 3+
Классы: 9,10,11

В данный прямоугольный треугольник вписать прямоугольник наибольшей площади так, чтобы все вершины прямоугольника лежали на сторонах треугольника.

Прислать комментарий     Решение

Задача 35757

Темы:   [ Треугольник (построения) ]
[ Две касательные, проведенные из одной точки ]
Сложность: 3+
Классы: 9,10

С помощью циркуля и линейки проведите через данную точку, лежащую внутри данного угла, прямую, отсекающую от данного угла треугольник заданного периметра.
Прислать комментарий     Решение


Страница: 1 2 3 4 5 6 >> [Всего задач: 27]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .