ЗАДАЧИ
problems.ru |
О проекте
|
Об авторах
|
Справочник
Каталог по темам | по источникам | |
|
Версия для печати
Убрать все задачи С помощью циркуля и линейки разделите данный отрезок на n равных частей. В треугольнике ABC на сторонах AB, AC и BC выбраны точки D, E и F соответственно так, что BF = 2CF, CE = 2AE и угол DEF – прямой. Пусть $AL$ — биссектриса треугольника $ABC$, точка $D$ — ее середина, $E$ — проекция $D$ на $AB$. Известно, что $AC = 3 AE$. Докажите, что треугольник $CEL$ равнобедренный. Докажите, что в прямоугольном треугольнике биссектриса, проведённая из вершины прямого угла, не превосходит половины проекции гипотенузы на прямую, перпендикулярную этой биссектрисе. На сторонах AB и BC треугольника ABC выбраны соответственно точки C1 и A1, отличные от вершин. Пусть K – середина A1C1, а I – центр окружности, вписанной в треугольник ABC. Оказалось, что четырёхугольник A1BC1I вписанный. Докажите, что угол AKC тупой. Докажите, что если при инверсии относительно некоторой окружности с центром O окружность S переходит в окружность S' , то O — один из центров гомотетии окружностей S и S' . С помощью циркуля и линейки постройте образ прямой при инверсии относительно данной окружности. На сторонах AB, BC, CA треугольника ABC выбраны точки P, Q, R соответственно таким образом, что AP = CQ и четырёхугольник RPBQ– вписанный. Касательные к описанной окружности треугольника ABC в точках A и C пересекают прямые RP и RQ в точках X и Y соответственно. Докажите, что RX = RY. а) В каждой вершине куба написано число 1 или число 0. На каждой грани куба написана сумма четырёх чисел, написанных в вершинах этой грани. Может ли оказаться, что все числа, написанные на гранях, различны? В сегмент вписываются всевозможные пары касающихся окружностей. Найдите множество их точек касания. С помощью циркуля и линейки постройте окружность, касающуюся трёх данных попарно пересекающихся окружностей, проходящих через одну точку. С помощью циркуля и линейки постройте образ данной окружности при инверсии относительно другой данной окружности.
Задача Паппа. III в. н.э.}На отрезке AB взята точка
C и на отрезках AB , BC , CA как на диаметрах построены
соответственно полуокружности α , β , γ по одну сторону от
AC . В криволинейный треугольник, образованный этими
полуокружностями, вписана окружность δ1 , в криволинейный
треугольник, образованный полуокружностями α , β и
окружностью δ1 , вписана окружность δ2 и т.д.
(окружность δn вписана в криволинейный треугольник,
образованный полуокружностями α , β и окружностью
δn-1 , n=2,3, .. ). Пусть rn — радиус окружности
δn , dn — расстояние от центра окружности δn
до прямой AB . Докажите, что Докажите, что если окружность и прямая (либо две окружности) касаются в точке M , отличной от точки O , то их образы при инверсии относительно окружности с центром O также касаются, а при инверсии с центром M окружность и прямая (две окружности) переходят в две параллельные прямые. С помощью циркуля и линейки постройте окружность, касающуюся двух данных окружностей и проходящую через данную точку, лежащую вне этих окружностей. В классе 25 учеников. Известно, что у любых двух девочек класса количество друзей-мальчиков из этого класса не совпадает. Какое наибольшее количество девочек может быть в этом классе? Таня стоит на берегу речки. У неё есть два глиняных кувшина: один — на 5 литров, а про второй Таня помнит лишь то, что он вмещает то ли 3, то ли 4 литра. Помогите Тане определить ёмкость второго кувшина. (Заглядывая в кувшин, нельзя понять, сколько в нём воды.) Докажите, что при инверсии сохраняется угол между окружностями (между окружностью и прямой, между прямыми). Доказать, что если 21 человек собрали 200 орехов, то есть два человека, собравшие поровну орехов. Внутри стороны BC правильного треугольника ABC взята точка D. Прямая, проходящая через точку C и параллельная AD, пересекает прямую AB в точке E. Докажите, что |
Страница: << 1 2 3 4 5 6 7 >> [Всего задач: 45]
Докажите,что площадь любого четырёхугольника ABCD не
превосходит
Докажите, что в прямоугольном треугольнике биссектриса, проведённая из вершины прямого угла, не превосходит половины проекции гипотенузы на прямую, перпендикулярную этой биссектрисе.
Внутри стороны BC правильного треугольника ABC взята точка D. Прямая, проходящая через точку C и параллельная AD, пересекает прямую AB в точке E. Докажите, что
Точка M лежит на стороне AC остроугольного треугольника ABC. Вокруг треугольников ABM и CBM описываются окружности. При каком положении точки M площадь общей части ограниченных ими кругов будет наименьшей?
Докажите, что для прямоугольного треугольника
0, 4 < r/h < 0, 5, где h — высота, опущенная из вершины прямого угла.
Страница: << 1 2 3 4 5 6 7 >> [Всего задач: 45]
|
© 2004-...
МЦНМО
(о копирайте)
|
Пишите нам
|
![]() |
Проект осуществляется при поддержке