Loading [Contrib]/a11y/accessibility-menu.js
ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Выбрано 22 задачи
Версия для печати
Убрать все задачи

Автор: Сонкин М.

В остроугольном треугольнике ABC через центр O описанной окружности и вершины B и C проведена окружность S. Пусть OK – диаметр окружности S, D и E – соответственно точки её пересечения с прямыми AB и AC. Докажите, что ADKE – параллелограмм.

Вниз   Решение


Основанием прямой призмы служит равнобедренная трапеция с острым углом α . Боковая сторона трапеции и её меньшее основание равны. Найдите объём призмы, если диагональ призмы равна a и образует с плоскостью основания угол β .

ВверхВниз   Решение


В коммерческом турнире по футболу участвовало пять команд. Каждая должна была сыграть с каждой из остальных ровно один матч. В связи с финансовыми трудностями организаторы некоторые игры отменили. В итоге оказалось, что все команды набрали различное число очков и ни одна команда в графе набранных очков не имеет нуля. Какое наименьшее число игр могло быть сыграно в турнире, если за победу начислялось три очка, за ничью – одно, за поражение – ноль?

ВверхВниз   Решение


Около прямоугольника $ABCD$ описана окружность. На меньшей дуге $BC$ окружности взята произвольная точка $E$. К окружности проведена касательная в точке $B$, пересекающая прямую $CE$ в точке $G$. Отрезки $AE$ и $BD$ пересекаются в точке $K$. Докажите, что прямые $GK$ и $AD$ перпендикулярны.

ВверхВниз   Решение


Угол между соседними боковыми гранями правильной шестиугольной пирамиды равен γ . Найдите плоский угол при вершине пирамиды.

ВверхВниз   Решение


Автор: Ботин Д.А.

Придворный астролог называет момент времени хорошим, если часовая, минутная и секундная стрелки часов находятся по одну сторону от какого-нибудь диаметра циферблата (стрелки вращаются на общей оси и не делают скачков). Какого времени в сутках больше, хорошего или плохого?

ВверхВниз   Решение


Мальвина дала Буратино задание: "Сосчитай кляксы в своей тетрадке, прибавь к их числу 7, раздели на 8, умножь на 6 и отними 9. Если сделаешь всё правильно, получишь простое число". Буратино всё перепутал. Кляксы он подсчитал точно, но потом умножил их количество на 7, вычел из результата 8, затем разделил на 6 и прибавил 9. Какой ответ получился у Буратино?

ВверхВниз   Решение


Плоский угол при вершине правильной шестиугольной пирамиды равен ϕ . Найдите угол между соседними боковыми гранями пирамиды.

ВверхВниз   Решение


Каждую сторону выпуклого четырёхугольника продолжили в обе стороны и на всех восьми продолжениях отложили равные между собой отрезки. Оказалось, что получившиеся восемь точек – внешние концы построенных отрезков – различны и лежат на одной окружности. Докажите, что исходный четырёхугольник – квадрат.

ВверхВниз   Решение


В трапеции KLMN известно, что LM$ \Vert$KN, $ \angle$KLM = $ {\frac{\pi}{2}}$, LM = l, KN = k, MN = a. Окружность проходит через точки M и N и касается прямой KL в точке A. Найдите площадь треугольника AMN.

ВверхВниз   Решение


Основанием прямой призмы служит ромб с острым углом α . Найдите объём призмы, если её большая диагональ равна l и образует с плоскостью основания угол β .

ВверхВниз   Решение


На доске записано целое число. Его последняя цифра запоминается, затем стирается и, умноженная на 5, прибавляется к тому числу, что осталось на доске после стирания. Первоначально было записано число 71998. Может ли после применения нескольких таких операций получиться число 19987?

ВверхВниз   Решение


Пусть S1 и S2 – две окружности, лежащие одна вне другой. Общая внешняя касательная касается их в точках A и B . Окружность S3 проходит через точки A и B и вторично пересекает окружности S1 и S2 в точках C и D соответственно; K – точка пересечения прямых, касающихся окружностей S1 и S2 соответственно в точках C и D . Докажите, что KC=KD .

ВверхВниз   Решение


В равнобедренном треугольнике ABC  (AB = BC)  средняя линия, параллельная стороне BC, пересекается со вписанной окружностью в точке F, не лежащей на основании AC. Докажите, что касательная к окружности в точке F пересекается с биссектрисой угла C на стороне AB.

ВверхВниз   Решение


Можно ли все клетки таблицы 9×2002 заполнить натуральными числами так, чтобы суммы чисел в каждом столбце и суммы чисел в каждой строке были бы простыми числами?

ВверхВниз   Решение


Диагонали трапеции ABCD пересекаются в точке K. На боковых сторонах трапеции, как на диаметрах, построены окружности. Точка K лежит вне этих окружностей. Докажите, что длины касательных, проведённых к этим окружностям из точки K, равны.

ВверхВниз   Решение


Дан остроугольный треугольник ABC. Точки B' и C' симметричны соответственно вершинам B и C относительно прямых AC и AB. Пусть P – точка пересечения описанных окружностей треугольников ABB' и ACC', отличная от A. Докажите, что центр описанной окружности треугольника ABC лежит на прямой PA.

ВверхВниз   Решение


Автор: Гордон В.

Хорда CD окружности с центром O перпендикулярна ее диаметру AB, а хорда AE делит пополам радиус OC.
Докажите, что хорда DE делит пополам хорду BC.

ВверхВниз   Решение


Дан треугольник $ABC$ и окружность $\gamma$ с центром в точке $A$, которая пересекает стороны $AB$ и $AC$. Пусть общая хорда описанной окружности треугольника и окружности $\gamma$ пересекает стороны $AB$ и $AC$ в точках $X$ и $Y$ соответственно. Отрезки $CX$ и $BY$ пересекают $\gamma$ в точках $S$ и $T$ соответственно. Описанные окружности треугольников $ACT$ и $BAS$ пересекаются в точках $A$ и $P$. Докажите, что прямые $CX$, $BY$, и $AP$ пересекаются в одной точке.

ВверхВниз   Решение


Точка C делит хорду AB окружности радиуса 6 на отрезки AC = 4 и CB = 5. Найдите минимальное из расстояний от точки C до точек окружности.

ВверхВниз   Решение


Прямоугольный треугольник ABC вписан в окружность. Из вершины C прямого угла проведена хорда CM, пересекающая гипотенузу в точке K. Найдите площадь треугольника ABM, если BK : AB = 3 : 4, BC = 2$ \sqrt{2}$, AC = 4.

ВверхВниз   Решение


Четырёхугольник ABCD описан около окружности с центром I. Точки M и N – середины сторон AB и CD. Известно, что  IM : AB = IN : CD.
Докажите, что ABCD – трапеция или параллелограмм.

Вверх   Решение

Задачи

Страница: << 33 34 35 36 37 38 39 >> [Всего задач: 207]      



Задача 101886

Темы:   [ Биссектриса угла (ГМТ) ]
[ Вспомогательные равные треугольники ]
[ Сумма внутренних и внешних углов многоугольника ]
[ Параллельные прямые, свойства и признаки. Секущие ]
Сложность: 3+
Классы: 8,9

Точка O лежит на диагонали KM выпуклого четырёхугольника KLMN. Известно, что  OM = ON  и что точка O одинаково удалена от прямых NK, KL и LM. Найдите углы четырёхугольника, если  ∠LOM = 55°  и  ∠KON = 90°.

Прислать комментарий     Решение

Задача 115316

Темы:   [ Равнобедренные, вписанные и описанные трапеции ]
[ Четырехугольники (прочее) ]
[ Вспомогательные равные треугольники ]
[ Параллельные прямые, свойства и признаки. Секущие ]
Сложность: 3+
Классы: 8,9

В выпуклом четырёхугольнике ABCD выполняются равенства:  ∠B = ∠C  и  CD = 2AB.  На стороне BC выбрана такая точка X, что  ∠BAX = ∠CDA.
Докажите, что  AX = AD.

Прислать комментарий     Решение

Задача 115730

Темы:   [ Вспомогательная окружность ]
[ Вписанный угол, опирающийся на диаметр ]
[ Углы, опирающиеся на равные дуги и равные хорды ]
[ Параллельные прямые, свойства и признаки. Секущие ]
Сложность: 3+
Классы: 8,9,10

Хорды AC и BD окружности пересекаются в точке P. Перпендикуляры к AC и BD в точках C и D, соответственно пересекаются в точке Q .
Докажите, что прямые AB и PQ перпендикулярны.

Прислать комментарий     Решение

Задача 116212

Темы:   [ Средняя линия треугольника ]
[ Средняя линия треугольника ]
[ Конкуррентность высот. Углы между высотами. ]
[ Параллельные прямые, свойства и признаки. Секущие ]
Сложность: 3+
Классы: 8,9

Точки M и N – середины боковых сторон AB и CD трапеции ABCD. Перпендикуляр, опущенный из точки M на диагональ AC, и перпендикуляр, опущенный из точки N на диагональ BD, пересекаются в точке P. Докажите, что  PA = PD.

Прислать комментарий     Решение

Задача 116421

Темы:   [ Описанные четырехугольники ]
[ Сумма внутренних и внешних углов многоугольника ]
[ Вписанный угол, опирающийся на диаметр ]
[ Параллельные прямые, свойства и признаки. Секущие ]
Сложность: 3+
Классы: 10,11

Четырёхугольник ABCD описан около окружности с центром I. Точки M и N – середины сторон AB и CD. Известно, что  IM : AB = IN : CD.
Докажите, что ABCD – трапеция или параллелограмм.

Прислать комментарий     Решение

Страница: << 33 34 35 36 37 38 39 >> [Всего задач: 207]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .