ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Выбрана 1 задача
Версия для печати
Убрать все задачи

В треугольнике ABC известно, что $ \angle$A = 120o, стороны AC = 1 и BC = $ \sqrt{7}$. На продолжении стороны CA взята точка M так, что BM является высотой треугольника ABC. Найдите радиус окружности, проходящей через точки A и M и касающейся в точке M окружности, проходящей через точки M, B и C.

   Решение

Задачи

Страница: << 39 40 41 42 43 44 45 >> [Всего задач: 1275]      



Задача 52408

Темы:   [ Углы, опирающиеся на равные дуги и равные хорды ]
[ Пятиугольники ]
[ Вспомогательные подобные треугольники ]
[ Вписанные и описанные многоугольники ]
Сложность: 4-
Классы: 8,9,10

Пятиугольник ABCDE вписан в окружность. Расстояния от точки A до прямых BC, CD и DE равны соответственно a, b и c.
Найдите расстояние от вершины A до прямой BE.

Прислать комментарий     Решение

Задача 52494

 [Задача Архимеда]
Темы:   [ Углы, опирающиеся на равные дуги и равные хорды ]
[ Признаки и свойства равнобедренного треугольника. ]
[ Вспомогательные равные треугольники ]
[ Ломаные ]
Сложность: 4-
Классы: 8,9

В дугу AB окружности вписана ломаная AMB из двух отрезков  (AM > MB).
Докажите, что основание перпендикуляра KH, опущенного из середины K дуги AB на отрезок AM, делит ломаную пополам.

Прислать комментарий     Решение

Задача 53089

Темы:   [ Вписанный угол равен половине центрального ]
[ Признаки и свойства равнобедренного треугольника. ]
[ Тригонометрические соотношения в прямоугольном треугольнике ]
Сложность: 4-
Классы: 8,9

Через вершины A и C треугольника ABC проведена окружность K, центр которой лежит на описанной окружности треугольника ABC. Окружность K пересекает продолжение стороны BA за точку A в точке M. Найдите угол C, если  MA : AB = 2 : 5,  а  ∠B = arcsin 3/5.

Прислать комментарий     Решение

Задача 53213

Темы:   [ Вписанный угол, опирающийся на диаметр ]
[ Касающиеся окружности ]
[ Гомотетия помогает решить задачу ]
Сложность: 4-
Классы: 8,9

На стороне AC остроугольного треугольника ABC взята точка D так, что AD = 1, DC = 2, а BD является высотой треугольника ABC. Окружность радиуса 2, проходящая через точки A и D, касается в точке D окружности, описанной около треугольника BDC. Найдите площадь треугольника ABC.

Прислать комментарий     Решение


Задача 53215

Темы:   [ Вписанный угол, опирающийся на диаметр ]
[ Касающиеся окружности ]
[ Гомотетия помогает решить задачу ]
Сложность: 4-
Классы: 8,9

В треугольнике ABC известно, что $ \angle$A = 120o, стороны AC = 1 и BC = $ \sqrt{7}$. На продолжении стороны CA взята точка M так, что BM является высотой треугольника ABC. Найдите радиус окружности, проходящей через точки A и M и касающейся в точке M окружности, проходящей через точки M, B и C.

Прислать комментарий     Решение


Страница: << 39 40 41 42 43 44 45 >> [Всего задач: 1275]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .