ЗАДАЧИ
problems.ru |
О проекте
|
Об авторах
|
Справочник
Каталог по темам | по источникам | |
|
![]() |
||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Версия для печати
Убрать все задачи На дуге
A1A2n + 1 описанной окружности S
правильного (2n + 1)-угольника
A1...A2n + 1 взята точка A.
Докажите, что:
Четырёхугольник ABCD вписан в окружность Ω с центром O, причём O не лежит на диагоналях четырёхугольника. Описанная окружность Ω1 треугольника AOC проходит через середину диагонали BD. Докажите, что описанная окружность Ω2 треугольника BOD проходит через середину диагонали AC.
На сторонах OA и OB четверти AOB круга построены как на диаметрах полуокружности ACO и OCB, пересекающиеся в точке C. Докажите, что: 1) прямая OC делит угол AOB пополам; 2) точки A, C и B лежат на одной прямой; 3) дуги AC, CO и CB равны между собой.
Окружность касается сторон AB и AD прямоугольника ABCD и
пересекает сторону DC в единственной точке F и сторону BC в
единственной точке E.
Докажите, что две касающиеся окружности гомотетичны относительно их точки касания.
Найдите площадь трапеции, если её диагонали равны 17 и 113, а высота равна 15.
В треугольной пирамиде SABC известны плоские углы при вершине
S :
С помощью циркуля и линейки постройте четырёхугольник ABCD по четырём углам и сторонам AB = a и CD = b.
Основание пирамиды Хеопса – квадрат, а её боковые грани – равные равнобедренные треугольники. Вписанная окружность треугольника ABC касается
сторон AC и BC в точках B1 и A1. Докажите, что если
AC > BC, то AA1 > BB1.
k вершин правильного n-угольника закрашены. Закраска называется почти равномерной, если для любого натурального m верно следующее условие: если M1 – множество m расположенных подряд вершин и M2 – другое такое множество, то количество закрашенных вершин в M1 отличается от количества закрашенных вершин в M2 не больше чем на 1. Доказать, что для любых натуральных n и k ≤ n почти равномерная закраска существует и что она единственна с точностью до поворотов закрашенного множества. Периоды двух последовательностей – m и n – взаимно простые числа. Какова максимальная длина начального куска, который может у них совпадать? Около окружности радиуса R описана равнобедренная трапеция ABCD. E и K – точки касания этой окружности с боковыми сторонами трапеции. Угол между основанием AB и боковой стороной AD трапеции равен 60°. Докажите, что EK || AB и найдите площадь трапеции ABKE. Окружности радиуса x и y касаются окружности
радиуса R, причем расстояние между точками касания равно a.
Вычислите длину следующей общей касательной к первым двум окружностям:
Площадь равнобедренной трапеции, описанной около окружности, равна S, а высота трапеции в два раза меньше её боковой стороны. В остроугольном треугольнике ABC O – центр описанной окружности, A1, B1, C1 – основания высот. На прямых OA1, OB1, OC1 нашли такие точки A', B', C' соответственно, что четырёхугольники AOBC', BOCA', COAB' вписанные. Докажите, что описанные окружности треугольников AA1A', BB1B', CC1C', имеют общую точку. |
Страница: << 1 2 3 4 >> [Всего задач: 20]
Пусть $M$ – середина гипотенузы $AB$ прямоугольного треугольника $ABC$. Окружность, проходящая через $C$ и $M$, пересекает прямые $BC$ и $AC$ в точках $P$ и $Q$ соответственно. Пусть $c_1, c_2$ – окружности с центрами $P$, $Q$ и радиусами $BP$, $AQ$ соответственно. Докажите, что $c_1$, $c_2$ и описанная окружность треугольника $ABC$ проходят через одну точку.
Три равные окружности радиуса R пересекаются в точке M . Пусть A , B и C – три другие точки их попарного пересечения. Докажите, что: а) радиус окружности, описанной около треугольника ABC , равен R ; б) M – точка пересечения высот треугольника ABC .
В остроугольном треугольнике ABC O – центр описанной окружности, A1, B1, C1 – основания высот. На прямых OA1, OB1, OC1 нашли такие точки A', B', C' соответственно, что четырёхугольники AOBC', BOCA', COAB' вписанные. Докажите, что описанные окружности треугольников AA1A', BB1B', CC1C', имеют общую точку.
В остроугольном неравнобедренном треугольнике ABC высоты CC1 и BB1 пересекают прямую, проходящую через вершину A и параллельную прямой BC, в точках P и Q. Пусть A0 – середина стороны BC, а AA1 – высота. Прямые A0C1 и A0B1 пересекают прямую PQ в точках K и L. Докажите, что описанные окружности треугольников PQA1, KLA0, A1B1C1 и окружность с диаметром AA1 пересекаются в одной точке.
В выпуклом четырёхугольнике ABCD точки P и Q – середины диагоналей AC и BD соответственно. Прямая PQ пересекает стороны AB и CD в точках N и M соответственно. Докажите, что описанные окружности треугольников ANP , BNQ , CMP и DMQ пересекаются в одной точке.
Страница: << 1 2 3 4 >> [Всего задач: 20]
|
© 2004-...
МЦНМО
(о копирайте)
|
Пишите нам
|
![]() |
Проект осуществляется при поддержке