Loading [Contrib]/a11y/accessibility-menu.js
ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Все авторы >> Карпов Д.В.

Фильтр
Сложность с по   Класс с по  
Выбрано 27 задач
Версия для печати
Убрать все задачи

Существует ли такой выпуклый 1976-гранник, который обладал бы следующим свойством: при произвольной расстановке стрелок на концах его рёбер сумма полученных векторов отлична от 0?

Вниз   Решение


Доказать, что при любом целом положительном n сумма     больше ½.

ВверхВниз   Решение


Найдите радиус наибольшей окружности, касающейся изнутри двух пересекающихся окружностей с радиусами R и r, если расстояние между их центрами равно a
(a < R + r).

ВверхВниз   Решение


Докажите, что множество простых чисел вида  p = 6k + 5  бесконечно.

ВверхВниз   Решение


Дан многочлен с целыми коэффициентами. В трёх целых точках он принимает значение 2.
Доказать, что ни в какой целой точке он не принимает значение 3.

ВверхВниз   Решение


В круге с центром O проведена хорда AB. Вычислите площадь получившегося сегмента, если  ∠AOB = α,  а радиус круга равен r.

ВверхВниз   Решение


Существует ли такое натуральное число n, что сумма цифр числа n2 равна 100?

ВверхВниз   Решение


Доказать, что число 100...001, в котором  21974 + 21000 – 1  нулей, составное.

ВверхВниз   Решение


В треугольнике ABC проведены медианы AD и BE. Углы CAD и CBE равны 30o. Доказать, что треугольник ABC правильный.

ВверхВниз   Решение


К двум окружностям, касающимся извне, проведены общие внешние касательные и точки касания соединены между собой. Доказать, что в полученном четырёхугольнике суммы противоположных сторон равны.

ВверхВниз   Решение


Решить в целых числах уравнение  x + y = x² – xy + y².

ВверхВниз   Решение


Имеется 1000 монет, среди них 0, 1 или 2 фальшивые. Известно, что фальшивые монеты имеют одинаковую массу, отличную от массы нефальшивых монет. Можно ли за три взвешивания на чашечных весах без гирь определить, есть ли фальшивые монеты и легче они или тяжелее нормальных? (Количество монет определять не надо.)

ВверхВниз   Решение


Доказать, что в десятичной записи чисел  2n + 1974n и 1974n  содержится одинаковое количество цифр.

ВверхВниз   Решение


Дискриминанты трёх приведённых квадратных трёхчленов равны 1, 4 и 9.
Докажите, что можно выбрать по одному корню каждого из них так, чтобы их сумма равнялась сумме оставшихся корней.

ВверхВниз   Решение


Постройте треугольник, если известны отрезки, на которые вписанная окружность делит его сторону, и радиус вписанной окружности.

ВверхВниз   Решение


Дан треугольник ABC. Найдите на прямой AB точку M, для которой сумма радиусов описанных окружностей треугольников ACM и BCM была бы наименьшей.

ВверхВниз   Решение


В государстве имеют хождение монеты в один золотой и в один грош, причём один золотой составляет 1001 грошей.
Можно ли, имея 1986 золотых, купить без сдачи несколько предметов по 1987 грошей?

ВверхВниз   Решение


a ≡ 68 (mod 1967),   a ≡ 69 (mod 1968).  Найти остаток от деления a на 14.

ВверхВниз   Решение


Доказать, что разносторонний треугольник нельзя разрезать на два равных треугольника.

ВверхВниз   Решение


Дан угол в 30o. Постройте окружность радиуса 2,5, касающуюся одной стороны этого угла и имеющую центр на другой его стороне. Найдите расстояние от центра окружности до вершины угла.

ВверхВниз   Решение


На продолжениях сторон CA и AB треугольника ABC за точки A и B соответственно отложены отрезки AE = BC и BF = AC. Окружность касается отрезка BF в точке N, стороны BC и продолжения стороны AC за точку C. Точка M – середина отрезка EF. Докажите, что прямая MN параллельна биссектрисе угла A.

ВверхВниз   Решение


В пространстве даны три отрезка A1A2, B1B2 и C1C2, не лежащие в одной плоскости и пересекающиеся в одной точке P. Обозначим через Oijk центр сферы, проходящей через точки Ai, Bj, Ck и P. Докажите, что прямые O111O222, O112O221, O121O212 и O211O122 пересекаются в одной точке.

ВверхВниз   Решение


В компании из шести человек любые пять могут сесть за круглый стол так, что каждые два соседа окажутся знакомыми.
Докажите, что и всю компанию можно усадить за круглый стол так, что каждые два соседа окажутся знакомыми.

ВверхВниз   Решение



Числа от 1 до 9 разместите в кружках фигуры (см. рис.) так, чтобы сумма четырёх чисел, находящихся в кружках-вершинах всех квадратов (их шесть), была постоянной.

ВверхВниз   Решение


B треугольнике ABC угол A равен 120°. Докажите, что расстояние от центра описанной окружности до ортоцентра равно  AB + AC.

ВверхВниз   Решение


На полке стоят, плотно прилегая друг к другу, две книги по 250 листов в каждой (см. рисунок). Каждая из обложек в 10 раз толще бумаги, на которой напечатаны обе книги. В каждую книгу вложена закладка. Расстояние между закладками втрое меньше общей толщины двух книг. Между какими листами лежит закладка во второй книге, если в первой книге она лежит посередине?

ВверхВниз   Решение


В микросхеме 2000 контактов, первоначально любые два контакта соединены отдельным проводом. Хулиганы Вася и Петя по очереди перерезают провода, причем Вася (он начинает) за ход режет один провод, а Петя – либо один, либо три провода. Хулиган, отрезающий последний провод от какого-либо контакта, проигрывает. Кто из них выигрывает при правильной игре?

Вверх   Решение

Все задачи автора

Страница: << 1 2 3 >> [Всего задач: 14]      



Задача 109546

Темы:   [ Процессы и операции ]
[ Разбиения на пары и группы; биекции ]
Сложность: 5-
Классы: 8,9,10

В колоде n карт. Часть из них лежит рубашками вверх, остальные – рубашками вниз. За один ход разрешается взять несколько карт сверху, перевернуть полученную стопку и снова положить ее сверху колоды. За какое наименьшее число ходов при любом начальном расположении карт можно добиться того, чтобы все карты лежали рубашками вниз?
Прислать комментарий     Решение


Задача 109706

Темы:   [ Теория игр (прочее) ]
[ Разбиения на пары и группы; биекции ]
Сложность: 5-
Классы: 7,8,9

В микросхеме 2000 контактов, первоначально любые два контакта соединены отдельным проводом. Хулиганы Вася и Петя по очереди перерезают провода, причем Вася (он начинает) за ход режет один провод, а Петя – либо один, либо три провода. Хулиган, отрезающий последний провод от какого-либо контакта, проигрывает. Кто из них выигрывает при правильной игре?
Прислать комментарий     Решение


Задача 110038

Темы:   [ Связность и разложение на связные компоненты ]
[ Обход графов ]
[ Вспомогательная раскраска (прочее) ]
Сложность: 5-
Классы: 9,10,11

В стране 2000 городов, некоторые пары городов соединены дорогами. Известно, что через любой город проходит не более N различных несамопересекающихся циклических маршрутов нечётной длины. Докажите, что страну можно разделить на  2N + 2  республики так, чтобы никакие два города из одной республики не были соединены дорогой.

Прислать комментарий     Решение

Задача 109663

Темы:   [ Связность и разложение на связные компоненты ]
[ Степень вершины ]
[ Метод спуска ]
Сложность: 5
Классы: 9,10,11

В стране N  1998 городов, и из каждого осуществляются беспосадочные перелеты в три других города (все авиарейсы двусторонние). Известно, что из каждого города, сделав несколько пересадок, можно долететь до любого другого. Министерство Безопасности хочет объявить закрытыми 200 городов, никакие два из которых не соединены авиалинией. Докажите, что это можно сделать так, чтобы можно было долететь из каждого незакрытого города в любой другой, не делая пересадок в закрытых городах.

Прислать комментарий     Решение

Задача 109690

Темы:   [ Выигрышные и проигрышные позиции ]
[ Разбиения на пары и группы; биекции ]
Сложность: 5
Классы: 8,9,10,11

В микросхеме 2000 контактов, первоначально любые два контакта соединены отдельным проводом. Хулиганы Вася и Петя по очереди перерезают провода, причем Вася (он начинает) за ход режет один провод, а Петя – либо два, либо три провода. Хулиган, отрезающий последний провод от какого-либо контакта, проигрывает. Кто из них выигрывает при правильной игре?
Прислать комментарий     Решение


Страница: << 1 2 3 >> [Всего задач: 14]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .