Страница:
<< 89 90 91 92
93 94 95 >> [Всего задач: 1957]
|
|
Сложность: 3+ Классы: 9,10
|
Точки O и I – центры описанной и вписанной окружностей неравнобедренного треугольника ABC. Две равные окружности касаются сторон AB, BC и AC, BC соответственно; кроме этого, они касаются друг друга в точке K. Оказалось, что K лежит на прямой OI.
Найдите ∠BAC.
|
|
Сложность: 3+ Классы: 9,10
|
По целому числу a построим последовательность a1 = a, a2 = 1 + a1, a3 = 1 + a1a2, a4 = 1 + a1a2a3, ... (каждое следующее число на 1 превосходит произведение всех предыдущих). Докажите, что разности ее соседних членов an+1 – an – квадраты целых чисел.
|
|
Сложность: 3+ Классы: 10,11
|
Последовательность (an) такова, что an = n² при 1 ≤ n ≤ 5 и при всех натуральных n выполнено равенство an+5 + an+1 = an+4 + an. Найдите a2015.
|
|
Сложность: 3+ Классы: 10,11
|
В прошлом году Миша купил смартфон, который стоил целое четырёхзначное число рублей. Зайдя в магазин в этом году, он заметил, что цена смартфона выросла на 20% и при этом состоит из тех же цифр, но в обратном порядке. Какую сумму Миша потратил на смартфон?
|
|
Сложность: 3+ Классы: 10,11
|
Сумма нескольких не обязательно различных положительных чисел не превосходила 100. Каждое из них заменили на новое следующим образом: сначала прологарифмировали по основанию 10, затем округлили стандартным образом до ближайшего целого числа и, наконец, возвели 10 в найденную целую степень. Могло ли оказаться так, что сумма новых чисел превышает 300?
Страница:
<< 89 90 91 92
93 94 95 >> [Всего задач: 1957]