Loading [Contrib]/a11y/accessibility-menu.js
ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Выбрано 29 задач
Версия для печати
Убрать все задачи

В ряд выписаны действительные числа a1, a2, a3, ..., a1996. Докажите, что можно выделить одно или несколько стоящих рядом чисел так, что их сумма будет отличаться от целого числа меньше, чем на 0,001.

Вниз   Решение


На каждой клетке доски 10×10 стоит фишка. Разрешается выбрать диагональ, на которой стоит чётное число фишек, и снять с неё любую фишку.
Какое наибольшее число фишек можно убрать с доски такими операциями?

ВверхВниз   Решение


По доске $n$×$n$ прошла ладья, побывав в каждой клетке один раз, причем каждый её ход был ровно на одну клетку. Клетки занумерованы от 1 до $n^2$ в порядке прохождения ладьи. Пусть $M$ – максимальная разность между номерами соседних (по стороне) клеток. Каково наименьшее возможное значение $M$?

ВверхВниз   Решение


Автор: Фольклор

Два десятизначных числа назовем соседними, если они различаются только одной цифрой в каком-то из разрядов (например, 1234567890 и 1234507890 соседние). Какое наибольшее количество десятизначных чисел можно выписать так, чтобы среди них не было соседних?

ВверхВниз   Решение


Назовём расположенный в пространстве треугольник $ABC$ удобным, если для любой точки $P$ вне его плоскости из отрезков $PA, PB$ и $PC$ можно сложить треугольник. Какие углы может иметь удобный треугольник?

ВверхВниз   Решение


В четырёхугольнике ABCD  AB = BC = CD = 1,  AD не равно 1. Положение точек B и C фиксировано, точки же A и D подвергаются преобразованиям, сохраняющим длины отрезков AB, CD и AD. Новое положение точки A получается из старого зеркальным отражением в отрезке BD, новое положение точки D получается из старого зеркальным отражением в отрезке AC (где A уже новое), затем на втором шагу опять A отражается относительно BD (D уже новое), затем снова преобразуется D, затем аналогично проводится третий шаг, и так далее. Докажите, что на каком-то шагу положение точек совпадает с первоначальным.

ВверхВниз   Решение


На плоскости даны парабола  y = x²  и окружность, имеющие ровно две общие точки: A и B. Оказалось, что касательные к окружности и параболе в точке A совпадают. Обязательно ли тогда касательные к окружности и параболе в точке B также совпадают?

ВверхВниз   Решение


Автор: Дидин М.

При каком наименьшем $k$ среди любых трёх ненулевых действительных чисел можно выбрать такие два числа $a$ и $b$, что  |$a - b$| ≤ $k$  или  |1/a1/b| ≤ $k$?

ВверхВниз   Решение


Окружности Ω1 и Ω2 пересекаются в точках A и B. Через точку B проведена прямая, вторично пересекающая Ω1 и Ω2 в точках K и M соответственно. Прямая l1 касается Ω1 в точке Q и параллельна прямой AM. R – вторая точка пересечения прямой QA с Ω2. Докажите, что
  а) касательная l2, проведённая к Ω2 в точке R, параллельна AK.;
  б) прямые l1, l2 и K имеют общую точку.

ВверхВниз   Решение


Автор: Фольклор

У каждого целого числа от  n + 1  до 2n включительно (n – натуральное) возьмём наибольший нечётный делитель и сложим все эти делители.
Докажите, что получится n².

ВверхВниз   Решение


Для каждого натурального числа n обозначим через O(n) его наибольший нечётный делитель. Даны произвольные натуральные числа
х1 = а  и  х2 = b.  Построим бесконечную последовательность натуральных чисел по правилу:  xn = O(хn–1 + хn–2),  где  n = 3, 4, ... .
  а) Докажите, что, начиная с некоторого места, все числа в последовательности будут равны одному и тому же числу.
  б) Как найти это число, зная числа a и b?

ВверхВниз   Решение


Докажите тождество: 1 . 2 . 3 + 2 . 3 . 4 +...+ n(n + 1)(n + 2) = $\displaystyle {\textstyle\frac{1}{4}}$n(n + 1)(n + 2)(n + 3).

ВверхВниз   Решение


Можно ли замостить доску 2003×2003 доминошками 1×2, которые разрешается располагать только горизонтально, и прямоугольниками 1×3, которые разрешается располагать только вертикально? (Две стороны доски условно считаются горизонтальными, а две другие – вертикальными.)

ВверхВниз   Решение


Докажите неравенство для натуральных n:  

ВверхВниз   Решение


На плоскости сидят кузнечик Коля и 2020 его товарищей. Коля собирается совершить прыжок через каждого из остальных кузнечиков (в произвольном порядке) так, что начальная и конечная точка каждого прыжка симметричны относительно перепрыгиваемого кузнечика. Назовём точку финишной, если Коля может в неё попасть после 2020-го прыжка. При каком наибольшем числе $N$ найдётся начальная расстановка кузнечиков, для которой имеется ровно $N$ различных возможных финишных точек?

ВверхВниз   Решение


Существует ли кусочно-линейная функция f, определённая на отрезке  [–1, 1]  (включая концы), для которой  f(f(x))= – x  при всех x?
(Функция называется кусочно-линейной, если её график есть объединение конечного числа точек и интервалов прямой; она может быть разрывной.)

ВверхВниз   Решение


Автор: Перлин А.

Найти все такие числа вида 2n (n натурально), что при вычёркивании первой цифры их десятичной записи снова получится степень двойки.

ВверхВниз   Решение


Докажите тождество: $ {\dfrac{1^2}{1\cdot3}}$ + $ {\dfrac{2^2}{3\cdot5}}$ +...+ $ {\dfrac{n^2}{(2n-1)(2n+1)}}$ = $ {\dfrac{n(n+1)}{2(2n+1)}}$.

ВверхВниз   Решение


Автор: Матвеев А.

Дан отрезок $AB$. Точки $X, Y, Z$ в пространстве выбираются так, чтобы $ABX$ был правильным треугольником, а $ABYZ$ – квадратом.
Докажите, что ортоцентры всех получающихся таким образом треугольников $XYZ$ попадают на некоторую фиксированную окружность.

ВверхВниз   Решение


Замок обнесён круговой стеной с девятью башнями, на которых дежурят рыцари. По истечении каждого часа все они переходят на соседние башни, причём каждый рыцарь движется либо все время по часовой стрелке, либо против. За ночь каждый рыцарь успевает подежурить на каждой башне. Известно, что был час, когда на каждой башне дежурили хотя бы два рыцаря, и был час, когда ровно на пяти башнях дежурили ровно по одному рыцарю. Докажите, что был час, когда на одной из башен вообще не было рыцарей.

ВверхВниз   Решение


На доску последовательно записываются натуральные числа. На n-м шаге (когда написаны числа  a1, a2, ..., an–1)  пишется любое число, которое нельзя представить в виде суммы  a1k1 + a2k2 + ... + an–1kn–1,  где ki – целые неотрицательные числа (на a1 никаких ограничений не накладывается). Доказать, что процесс написания чисел не может быть бесконечным.

ВверхВниз   Решение


Докажите, что для любого натурального n  10n + 18n – 1  делится на 27.

ВверхВниз   Решение


В однокруговом турнире участвовали 15 команд.
  а) Докажите, что хотя бы в одной игре встретились команды, которые перед этой игрой участвовали в сумме в нечётном числе игр этого турнира.
  б) Могла ли такая игра быть единственной?

ВверхВниз   Решение


Автор: Глебов А.

Пусть $n$ – натуральное число. Назовём последовательность $a_1, a_2, ..., a_n$ интересной, если для каждого  $i$ = 1, 2, ..., $n$  верно одно из равенств  $a_i = i$  или  $a_i = i$ + 1.  Назовём интересную последовательность чётной, если сумма её членов чётна, и нечётной – иначе. Для каждой нечётной интересной последовательности нашли произведение её чисел и записали его на первый листок. Для каждой чётной – сделали то же самое и записали на второй листок. На каком листке сумма чисел больше и на сколько? (Дайте ответ в зависимости от $n$.)

ВверхВниз   Решение


В бесконечной последовательности натуральных чисел каждое следующее число получается прибавлением к предыдущему одной из его ненулевых цифр.
Докажите, что в этой последовательности найдётся чётное число.

ВверхВниз   Решение


Имеется много карточек, на каждой из которых записано натуральное число от 1 до n. Известно, что сумма чисел на всех карточках равна nk, где k – целое число. Докажите, что карточки можно разложить на k групп так, чтобы в каждой группе сумма чисел, записанных на карточках, равнялась n!.

ВверхВниз   Решение


Дан картонный прямоугольник со сторонами a см и b см, где  b/2 < a < b.
Докажите, что его можно разрезать на три куска, из которых складывается квадрат.

ВверхВниз   Решение


В белом клетчатом квадрате 100×100 закрашено чёрным несколько клеток (не обязательно соседних). В каждой горизонтали или вертикали, где есть чёрные клетки, их количество нечётно, так что одна из клеток – средняя по счёту. Все чёрные клетки, средние по горизонтали, стоят в разных вертикалях. Все чёрные клетки, средние по вертикали, стоят в разных горизонталях.
  а) Докажите, что найдётся клетка, средняя и по горизонтали, и по вертикали.
  б) Обязательно ли каждая клетка, средняя по горизонтали – средняя и по вертикали?

ВверхВниз   Решение


Внутри треугольника ABC взята точка P так, что  ∠ABP = ∠ACP,  а  ∠CBP = ∠CAP. Докажите, что P – точка пересечения высот треугольника ABC.

Вверх   Решение

Задачи

Страница: << 2 3 4 5 6 7 8 >> [Всего задач: 41]      



Задача 98593

Темы:   [ Ортоцентр и ортотреугольник ]
[ Вписанные четырехугольники (прочее) ]
[ Вписанные и описанные окружности ]
[ Углы, опирающиеся на равные дуги и равные хорды ]
[ Признаки и свойства равнобедренного треугольника. ]
Сложность: 4-
Классы: 8,9

Внутри треугольника ABC взята точка P так, что  ∠ABP = ∠ACP,  а  ∠CBP = ∠CAP. Докажите, что P – точка пересечения высот треугольника ABC.

Прислать комментарий     Решение

Задача 98598

Темы:   [ Куб ]
[ Свойства сечений ]
[ Параллельность прямых и плоскостей ]
[ Неравенство треугольника (прочее) ]
Сложность: 4-
Классы: 10,11

Некоторый куб рассекли плоскостью так, что в сечении получился пятиугольник.
Докажите, что длина одной из сторон этого пятиугольника отличается от 1 метра по крайней мере на 20 сантиметров.

Прислать комментарий     Решение

Задача 98607

Темы:   [ Последовательности (прочее) ]
[ Десятичная система счисления ]
[ Четность и нечетность ]
[ Арифметика остатков (прочее) ]
[ Примеры и контрпримеры. Конструкции ]
Сложность: 4-
Классы: 8,9

В последовательности натуральных чисел каждое число, кроме первого, получается прибавлением к предыдущему самой большой его цифры.
Какое наибольшее количество подряд идущих членов последовательности могут быть нечётными?

Прислать комментарий     Решение

Задача 98608

Темы:   [ Замощения костями домино и плитками ]
[ Вспомогательная раскраска (прочее) ]
[ Четность и нечетность ]
Сложность: 4-
Классы: 8,9

Можно ли замостить доску 2003×2003 доминошками 1×2, которые разрешается располагать только горизонтально, и прямоугольниками 1×3, которые разрешается располагать только вертикально? (Две стороны доски условно считаются горизонтальными, а две другие – вертикальными.)

Прислать комментарий     Решение

Задача 98612

Темы:   [ Перестановки и подстановки (прочее) ]
[ Десятичная система счисления ]
[ Четность и нечетность ]
[ Примеры и контрпримеры. Конструкции ]
Сложность: 4-
Классы: 10,11

Сто номерков выложили в ряд в порядке возрастания: 00, 01, 02, 03, ..., 99. Затем номерки переставили так, что каждый следующий номерок стал получаться из предыдущего увеличением или уменьшением ровно одной из цифр на 1 (например, после 29 может идти 19, 39 или 28, а 30 или 20 – не может). Какое наибольшее число номерков могло остаться на своих местах?

Прислать комментарий     Решение

Страница: << 2 3 4 5 6 7 8 >> [Всего задач: 41]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .