ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Выбрано 5 задач
Версия для печати
Убрать все задачи

Кузнечик прыгает по числовой прямой, на которой отмечены точки $-a$ и $b$. Известно, что $a$ и $b$ — положительные числа, а их отношение иррационально. Если кузнечик находится в точке, которая ближе к $-a$, то он прыгает вправо на расстояние, равное $a$. Если же он находится в середине отрезка $[-a;b]$ или в точке, которая ближе к $b$, то он прыгает влево на расстояние, равное $b$. Докажите, что независимо от своего начального положения кузнечик в некоторый момент окажется от точки 0 на расстоянии, меньшем $10^{-6}$.

Вниз   Решение


С ненулевым числом разрешается проделывать следующие операции: x , x . Верно ли, что из каждого ненулевого рационального числа можно получить каждое рациональное число с помощью конечного числа таких операций?

ВверхВниз   Решение


На сторонах AB и BC равностороннего треугольника ABC отмечены точки L и K соответственно, M – точка пересечения отрезков AK и CL. Известно, что площадь треугольника AMC равна площади четырёхугольника LBKM. Найдите угол AMC.

ВверхВниз   Решение


Середину более длинной боковой стороны прямоугольной трапеции соединили с вершинами трапеции. При этом трапеция разделилась на три равнобедренных треугольника. Найдите величину острого угла трапеции.

ВверхВниз   Решение


Плоский угол при вершине правильной треугольной пирамиды ABCD с основанием ABC равен α . Правильная усечённая пирамида ABCA1B1C1 разрезана по пяти рёбрам: A1B1 , B1C1 , C1C , CA и AB . После чего эту пирамиду развернули на плоскость. При каких значениях α получившаяся развёртка будет обязательно накрывать сама себя?

Вверх   Решение

Задачи

Страница: << 1 2 3 4 5 6 >> [Всего задач: 27]      



Задача 87638

Темы:   [ Равногранный тетраэдр ]
[ Неравенства с трехгранными углами ]
Сложность: 4
Классы: 10,11

Противоположные рёбра треугольной пирамиды попарно равны. Докажите, что все грани этой пирамиды – равные остроугольные треугольники.
Прислать комментарий     Решение


Задача 109358

Темы:   [ Свойства разверток ]
[ Неравенства с трехгранными углами ]
Сложность: 4
Классы: 10,11

Плоский угол при вершине правильной треугольной пирамиды ABCD с основанием ABC равен α . Правильная усечённая пирамида ABCA1B1C1 разрезана по пяти рёбрам: A1B1 , B1C1 , C1C , CA и AB . После чего эту пирамиду развернули на плоскость. При каких значениях α получившаяся развёртка будет обязательно накрывать сама себя?
Прислать комментарий     Решение


Задача 78510

Темы:   [ Окружности на сфере ]
[ Неравенства с трехгранными углами ]
[ Принцип Дирихле (углы и длины) ]
[ Разбиения на пары и группы; биекции ]
Сложность: 5
Классы: 10,11

Доказать, что на сфере нельзя так расположить три дуги больших окружностей в 300o каждая, чтобы никакие две из них не имели ни общих точек, ни общих концов.

Примечание: Большая окружность – это окружность, полученная в сечении сферы плоскостью, проходящей через ее центр.
Прислать комментарий     Решение


Задача 110782

Темы:   [ Свойства разверток ]
[ Прямоугольные треугольники (прочее) ]
[ Неравенства с трехгранными углами ]
[ Частные случаи тетраэдров (прочее) ]
Сложность: 4
Классы: 9,10,11

Может ли развертка тетраэдра оказаться треугольником со сторонами 3, 4 и 5 (тетраэдр можно резать только по ребрам)?
Прислать комментарий     Решение


Задача 116774

Темы:   [ Пирамида (прочее) ]
[ Свойства разверток ]
[ Касательные к сферам ]
[ Соображения непрерывности ]
[ Неравенства с трехгранными углами ]
[ Доказательство от противного ]
Сложность: 4+
Классы: 10,11

Автор: Пак И.

Дана пирамида SA1A2...An, основание которой – выпуклый многоугольник A1A2...An. Для каждого  i = 1, 2, ..., n  в плоскости основания построили треугольник XiAiAi+1, равный треугольнику SAiAi+1 и лежащий по ту же сторону от прямой AiAi+1, что и основание (мы полагаем  An+1 = A1).  Докажите, что построенные треугольники покрывают всё основание.

Прислать комментарий     Решение

Страница: << 1 2 3 4 5 6 >> [Всего задач: 27]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .