Loading [Contrib]/a11y/accessibility-menu.js
ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Выбрано 16 задач
Версия для печати
Убрать все задачи

Найдите объём правильной четырёхугольной пирамиды со стороной основания a и высотой h .

Вниз   Решение


Найдите объём правильной треугольной пирамиды со стороной основания a и высотой h .

ВверхВниз   Решение


Прямые a и b пересекаются. Докажите, что все прямые, параллельные прямой b и пересекающие прямую a , лежат в одной плоскости.

ВверхВниз   Решение


Есть шоколадка в форме равностороннего треугольника со стороной n, разделённая бороздками на равносторонние треугольники со стороной 1. Играют двое. За ход можно отломать от шоколадки треугольный кусок вдоль бороздки, съесть его, а остаток передать противнику. Тот, кто получит последний кусок – треугольник со стороной 1, – победитель. Для каждого n выясните, кто из играющих может всегда выигрывать, как бы не играл противник?

ВверхВниз   Решение


Найдите объём правильной шестиугольной пирамиды с боковым ребром b и высотой h .

ВверхВниз   Решение


Касательная в точке A к описанной окружности треугольника ABC пересекает продолжение стороны BC за точку B в точке K, L – середина AC, а точка M на отрезке AB такова, что  ∠AKM = ∠CKL.  Докажите, что  MA = MB.

ВверхВниз   Решение


Петя может располагать три отрезка в пространстве произвольным образом. После того как Петя расположит эти отрезки, Андрей пытается найти плоскость и спроектировать на нее отрезки так, чтобы проекции всех трех были равны. Всегда ли ему удастся это сделать, если:
а) три отрезка имеют равные длины?
б) длины двух отрезков равны между собой и не равны длине третьего?

ВверхВниз   Решение


Автор: Скробот Д.

Дан треугольник ABC. Окружность ω касается описанной окружности Ω треугольника ABC в точке A, пересекает сторону AB в точке K, а также пересекает сторону BC. Касательная CL к окружности ω такова, что отрезок KL пересекает сторону BC в точке T. Докажите, что отрезок BT равен по длине касательной, проведённой из точки B к ω.

ВверхВниз   Решение


Боковые стороны прямоугольной трапеции равны 6 и 6,25. Диагональ трапеции, проведённая из вершины острого угла, является его биссектрисой. Найдите эту диагональ и площадь трапеции.

ВверхВниз   Решение


Найдите объём правильной треугольной пирамиды со стороной основания a и боковым ребром b .

ВверхВниз   Решение


Пусть A и B – две окружности, лежащие по одну сторону от прямой m . Постройте касательную к окружности A , которая после отражения от прямой m также коснётся окружности B .

ВверхВниз   Решение


Последовательность a1,a2,.. такова, что a1(1,2) и ak+1=ak+ при любом натуральном  k . Докажите, что в ней не может существовать более одной пары членов с целой суммой.

ВверхВниз   Решение


Сторона основания правильной треугольной пирамиды равна a . Боковое ребро образует с плоскостью основания угол 60o . Найдите высоту пирамиды.

ВверхВниз   Решение


Прямые, симметричные диагонали BD четырёхугольника ABCD относительно биссектрис углов B и D, проходят через середину диагонали AC.
Докажите, что прямые, симметричные диагонали AC относительно биссектрис углов A и C, проходят через середину диагонали BD.

ВверхВниз   Решение


В кубе АВСDА1В1С1D1 площадь ортогональной проекции грани АА1В1В на плоскость, перпендикулярную диагонали АС1, равна 1.
Найдите площадь ортогональной проекции куба на эту плоскость.

ВверхВниз   Решение


Плоский угол при вершине правильной треугольной пирамиды ABCD с основанием ABC равен α . Правильная усечённая пирамида ABCA1B1C1 разрезана по пяти рёбрам: A1B1 , B1C1 , C1C , CA и AB . После чего эту пирамиду развернули на плоскость. При каких значениях α получившаяся развёртка будет обязательно накрывать сама себя?

Вверх   Решение

Задачи

Страница: << 1 2 3 4 5 6 >> [Всего задач: 27]      



Задача 87638

Темы:   [ Равногранный тетраэдр ]
[ Неравенства с трехгранными углами ]
Сложность: 4
Классы: 10,11

Противоположные рёбра треугольной пирамиды попарно равны. Докажите, что все грани этой пирамиды – равные остроугольные треугольники.
Прислать комментарий     Решение


Задача 109358

Темы:   [ Свойства разверток ]
[ Неравенства с трехгранными углами ]
Сложность: 4
Классы: 10,11

Плоский угол при вершине правильной треугольной пирамиды ABCD с основанием ABC равен α . Правильная усечённая пирамида ABCA1B1C1 разрезана по пяти рёбрам: A1B1 , B1C1 , C1C , CA и AB . После чего эту пирамиду развернули на плоскость. При каких значениях α получившаяся развёртка будет обязательно накрывать сама себя?
Прислать комментарий     Решение


Задача 78510

Темы:   [ Окружности на сфере ]
[ Неравенства с трехгранными углами ]
[ Принцип Дирихле (углы и длины) ]
[ Разбиения на пары и группы; биекции ]
Сложность: 5
Классы: 10,11

Доказать, что на сфере нельзя так расположить три дуги больших окружностей в 300o каждая, чтобы никакие две из них не имели ни общих точек, ни общих концов.

Примечание: Большая окружность – это окружность, полученная в сечении сферы плоскостью, проходящей через ее центр.
Прислать комментарий     Решение


Задача 110782

Темы:   [ Свойства разверток ]
[ Прямоугольные треугольники (прочее) ]
[ Неравенства с трехгранными углами ]
[ Частные случаи тетраэдров (прочее) ]
Сложность: 4
Классы: 9,10,11

Может ли развертка тетраэдра оказаться треугольником со сторонами 3, 4 и 5 (тетраэдр можно резать только по ребрам)?
Прислать комментарий     Решение


Задача 116774

Темы:   [ Пирамида (прочее) ]
[ Свойства разверток ]
[ Касательные к сферам ]
[ Соображения непрерывности ]
[ Неравенства с трехгранными углами ]
[ Доказательство от противного ]
Сложность: 4+
Классы: 10,11

Автор: Пак И.

Дана пирамида SA1A2...An, основание которой – выпуклый многоугольник A1A2...An. Для каждого  i = 1, 2, ..., n  в плоскости основания построили треугольник XiAiAi+1, равный треугольнику SAiAi+1 и лежащий по ту же сторону от прямой AiAi+1, что и основание (мы полагаем  An+1 = A1).  Докажите, что построенные треугольники покрывают всё основание.

Прислать комментарий     Решение

Страница: << 1 2 3 4 5 6 >> [Всего задач: 27]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .