Loading [Contrib]/a11y/accessibility-menu.js
ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Выбрано 19 задач
Версия для печати
Убрать все задачи

Автор: Фольклор

Верёвочку сложили пополам, потом ещё раз пополам, потом снова пополам, а затем все слои верёвочки разрезали в одном месте.
Какова могла быть длина верёвочки, если известно, что какие-то два из полученных кусков имели длины 9 метров и 4 метра?

Вниз   Решение


Фиксированы две окружности w1 и w2, одна их внешняя касательная l и одна их внутренняя касательная m. На прямой m выбирается точка X, а на прямой L строятся точки Y и Z так, что XY и XZ касаются w1 и w2 соответственно, а треугольник XYZ содержит окружности w1 и w2. Докажите, что центры окружностей, вписанных в треугольники XYZ, лежат на одной прямой.

ВверхВниз   Решение


Автор: Фольклор

В треугольнике АВС проведена биссектриса BD. Докажите, что АВ > AD.

ВверхВниз   Решение


Сфера проходит через точки A , B , C , D и пересекает отрезки SA , SB , SC , SD в точках A1 , B1 , C1 , D1 соответственно. Известно, что SD1 = , DD1 = , отношение площадей треугольников SA1B1 и SAB равно , отношение объёмов пирамид SB1C1D1 и SBCD равно , а отношение объёмов пирамид SA1B1C1 и SABC равно . Найдите отрезки SA1 , SB1 , SC1 .

ВверхВниз   Решение


Автор: Фольклор

Для некоторых чисел а, b, c и d, отличных от нуля, выполняется равенство:    .   Найдите знак числа ас.

ВверхВниз   Решение


а) Все вершины пирамиды лежат на гранях куба, но не на его ребрах, причем на каждой грани лежит хотя бы одна вершина. Какое наибольшее количество вершин может иметь пирамида? б) Все вершины пирамиды лежат в плоскостях граней куба, но не на прямых, содержащих его ребра, причем в плоскости каждой грани лежит хотя бы одна вершина. Какое наибольшее количество вершин может иметь пирамида?

ВверхВниз   Решение


Существует ли такое вещественное α, что число cos α иррационально, а все числа cos 2α, cos 3α, cos 4α, cos 5α рациональны?

ВверхВниз   Решение


Фокусник с завязанными глазами выдаёт зрителю пять карточек с номерами от 1 до 5. Зритель прячет две карточки, а три отдаёт ассистенту фокусника. Ассистент указывает зрителю на две из них, и зритель называет номера этих карточек фокуснику (в том порядке, в каком захочет). После этого фокусник угадывает номера карточек, спрятанных у зрителя. Как фокуснику и ассистенту договориться, чтобы фокус всегда удавался?

ВверхВниз   Решение


Найдите все такие простые числа p, q, r и s, что их сумма – простое число. а числа  p² + qs  и  p² + qr  – квадраты натуральных чисел. (Числа p, q, r и s предполагаются различными.)

ВверхВниз   Решение


Каждую сторону выпуклого четырёхугольника продолжили в обе стороны и на всех восьми продолжениях отложили равные между собой отрезки. Оказалось, что получившиеся восемь точек – внешние концы построенных отрезков – различны и лежат на одной окружности. Докажите, что исходный четырёхугольник – квадрат.

ВверхВниз   Решение


По шоссе мимо наблюдателя проехали "Москвич", "Запорожец" и двигавшаяся им навстречу "Нива". Известно, что когда с наблюдателем поравнялся "Москвич", то он был равноудалён от "Запорожца" и "Нивы", а когда с наблюдателем поравнялась "Нива", то она была равноудалена от "Москвича" и "Запорожца". Докажите, что "Запорожец" в момент проезда мимо наблюдателя был равноудалён от "Нивы" и "Москвича". (Скорости автомашин считаем постоянными. В рассматриваемые моменты равноудалённые машины находились по разные стороны от наблюдателя.)

ВверхВниз   Решение


Дан равнобедренный треугольник ABC  (AB = AC).  На меньшей дуге AB описанной около него окружности взята точка D. На продолжении отрезка AD за точку D выбрана точка E так, что точки A и E лежат в одной полуплоскости относительно BC. Описанная окружность треугольника BDE пересекает сторону AB в точке F. Докажите, что прямые EF и BC параллельны.

ВверхВниз   Решение


Про три положительных числа известно, что если выбрать одно из них и прибавить к нему сумму квадратов двух других, то получится одна и та же сумма, независимо от выбранного числа. Верно ли, что все числа равны?

ВверхВниз   Решение


Точки A , B , C , D , E , F лежат на сфере радиуса . Отрезки AD , BE и CF пересекаются в точке S , находящейся на расстоянии 1 от центра сферы. Объёмы пирамид SABC и SDEF относятся как 1:9, пирамид SABF и SDEC – как 4:9, пирамид SAEC и SDBF – как 9:4. Найдите отрезки SA , SB , SC .

ВверхВниз   Решение


Даны 2011 ненулевых целых чисел. Известно, что сумма любого из них с произведением оставшихся 2010 чисел отрицательна. Докажите, что если произвольным образом разбить все данные числа на две группы и перемножить числа в группах, то сумма двух полученных произведений также будет отрицательной.

ВверхВниз   Решение


Автор: Перлин А.

Существует ли такой квадратный трёхчлен P(x) с целыми коэффициентами, что для любого натурального числа n, в десятичной записи которого участвуют одни единицы, число P(n) также записывается одними единицами?

ВверхВниз   Решение


Автор: Левин А.

Города A , B , C и D расположены так, что расстояние от C до A меньше, чем расстояние от D до A , а расстояние от C до B меньше, чем расстояние от D до B . Докажите, что расстояние от города C до любой точки прямолинейной дороги, соединяющей города A и B , меньше, чем расстояние от D до этой точки.

ВверхВниз   Решение


Даны положительные числа x, y, z. Докажите неравенство   

ВверхВниз   Решение


Две сферы пересечены плоскостью, параллельной их линии центров. Эта плоскость делит площадь поверхности одной сферы в отношении m:1 , а площадь поверхности другой – в отношении n:1 ( m>1 , n>1 ). Найдите отношение радиусов сфер.

Вверх   Решение

Задачи

Страница: << 68 69 70 71 72 73 74 >> [Всего задач: 2399]      



Задача 111281

Темы:   [ Правильная пирамида ]
[ Теорема синусов ]
Сложность: 4
Классы: 10,11

В правильной четырёхугольной пирамиде SABCD ( S – вершина) AB=5 и SA=4 . Через точку A проведена плоскость α , пересекающая ребро SD и удалённая от точек B и D на одинаковое расстояние, равное . Найдите длины отрезков, на которые плоскость α делит ребро SD , если известно, что α не параллельна прямой BD .
Прислать комментарий     Решение


Задача 111369

Тема:   [ Касающиеся сферы ]
Сложность: 4
Классы: 10,11

Докажите, что если в треугольной пирамиде сумма длин противоположных рёбер одна и та же для любой пары таких рёбер, то вершины этой пирамиды являются центрами четырёх шаров, попарно касающихся друг друга.
Прислать комментарий     Решение


Задача 111401

Темы:   [ Правильный тетраэдр ]
[ Вспомогательные подобные треугольники ]
Сложность: 4
Классы: 10,11

Два правильных тетраэдра ABCD и MNPQ расположены так, что плоскости BCD и NPQ совпадают, вершина M лежит на высоте AO первого тетраэдра, а плоскость MNP проходит через центр грани ABC и середину ребра BD. Найдите отношение длин рёбер тетраэдров.

Прислать комментарий     Решение

Задача 111426

Тема:   [ Площадь сферы и ее частей ]
Сложность: 4
Классы: 10,11

Две сферы с центрами O1 и O2 пересечены плоскостью P , перпендикулярной отрезку O1O2 и проходящей через его середину. Плоскость P делит площадь поверхности первой сферы в отношении m:1 , а площадь поверхности второй сферы в отношении n:1 ( m>1 , n>1 ). Найдите отношение радиусов этих сфер.
Прислать комментарий     Решение


Задача 111428

Тема:   [ Площадь сферы и ее частей ]
Сложность: 4
Классы: 10,11

Две сферы пересечены плоскостью, параллельной их линии центров. Эта плоскость делит площадь поверхности одной сферы в отношении m:1 , а площадь поверхности другой – в отношении n:1 ( m>1 , n>1 ). Найдите отношение радиусов сфер.
Прислать комментарий     Решение


Страница: << 68 69 70 71 72 73 74 >> [Всего задач: 2399]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .