Loading [Contrib]/a11y/accessibility-menu.js
ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Выбрано 15 задач
Версия для печати
Убрать все задачи

Две параболы с различными вершинами являются графиками квадратных трёхчленов со старшими коэффициентами p и q. Известно, что вершина каждой из парабол лежит на другой параболе. Чему может быть равно  p + q?

Вниз   Решение


Найти все такие тройки простых чисел x, y, z, что  19x − yz = 1995.

ВверхВниз   Решение


Стороны параллелограмма равны a и b , а острый угол между диагоналями равен α . Найдите площадь параллелограмма.

ВверхВниз   Решение



а) Из картона вырезали 7 выпуклых многоугольников и положили на стол так, что любые 6 из них можно прибить к столу двумя гвоздями, а все 7 нельзя. Приведите пример таких многоугольников и их расположения. (Многоугольники могут перекрываться.)

б) Из картона вырезали 8 выпуклых многоугольников и положили на стол так, что любые 7 из них можно прибить к столу двумя гвоздями, а все 8 — нельзя. Приведите пример таких многоугольников и их расположения. (Многоугольники могут перекрываться.)

ВверхВниз   Решение


Окружности σB, σC – вневписанные для треугольника ABC (касаются соответственно сторон AC и AB и продолжений двух других сторон). Окружность ωB симметрична σB относительно середины стороны AC, окружность ωC симметрична σC относительно середины стороны AB. Докажите, что прямая, проходящая через точки пересечения окружностей ωB и ωC, делит периметр треугольника ABC пополам.

ВверхВниз   Решение


Барон Мюнхгаузен рассказывал, что у него есть карта страны Оз с пятью городами. Каждые два города соединены дорогой, не проходящей через другие города. Каждая дорога пересекает на карте не более одной другой дороги (и не более одного раза). Дороги обозначены жёлтым или красным (по цвету кирпича, которым вымощены), и при обходе вокруг каждого города (по периметру) цвета выходящих из него дорог чередуются. Могут ли слова барона быть правдой?

ВверхВниз   Решение


Из вершины A квадрата ABCD со стороной 1 проведены два луча, пересекающие квадрат так, что вершина C лежит между лучами. Угол между лучами равен β. Из вершин B и D проведены перпендикуляры к лучам. Найдите площадь четырёхугольника с вершинами в основаниях этих перпендикуляров.

ВверхВниз   Решение


Треть роты осталась в лагере, а остальные бойцы уехали на стрельбы. Оставшиеся в лагере съели за обедом четверть приготовленной похлёбки, а вернувшиеся вечером со стрельб получили порции в полтора раза большие, чем давали за обедом. Сколько похлебки осталось для ротной собаки Найды?

ВверхВниз   Решение


Докажите, что в кубе $ABCDA_1B_1C_1D_1$ прямые $AC_1$ и $BD$ перпендикулярны.

ВверхВниз   Решение


Дан равносторонний треугольник АВС. Точка К – середина стороны АВ, точка М лежит на стороне ВС, причём  ВМ : МС = 1 : 3.  На стороне АС выбрана точка P так, что периметр треугольника РКМ – наименьший из возможных. В каком отношении точка Р делит сторону АС?

ВверхВниз   Решение


В треугольнике ABC даны длины сторон AB = $ \sqrt{2}$, BC = $ \sqrt{5}$ и AC = 3. Сравните величину угла BOC и 112, 5o, если O — центр вписанной в треугольник ABC окружности.

ВверхВниз   Решение


Автор: Сонкин М.

На стороне AB треугольника ABC выбрана точка D . Окружность, описанная около треугольника BCD , пересекает сторону AC в точке M , а окружность, описанная около треугольника ACD , пересекает сторону BC в точке N (точки M и N отличны от точки C ). Пусть O – центр описанной окружности треугольника CMN . Докажите, что прямая OD перпендикулярна стороне AB .

ВверхВниз   Решение


Из точки M на плоскость α опущен перпендикуляр MH длины и проведены две наклонные, составляющие с перпендикуляром углы по 60o . Угол между наклонными равен 120o . а) Найдите расстояние между основаниями A и B наклонных. б) На отрезке AB как на катете в плоскости α построен прямоугольный треугольник ABC (угол A – прямой). Найдите объём пирамиды MABC , зная, что cos BMC = - .

ВверхВниз   Решение


Докажите, что две непересекающиеся окружности S1 и S2 (или окружность и прямую) можно при помощи инверсии перевести в пару концентрических окружностей.

ВверхВниз   Решение


Автор: Пак И.

Дана пирамида SA1A2...An, основание которой – выпуклый многоугольник A1A2...An. Для каждого  i = 1, 2, ..., n  в плоскости основания построили треугольник XiAiAi+1, равный треугольнику SAiAi+1 и лежащий по ту же сторону от прямой AiAi+1, что и основание (мы полагаем  An+1 = A1).  Докажите, что построенные треугольники покрывают всё основание.

Вверх   Решение

Задачи

Страница: << 5 6 7 8 9 10 11 >> [Всего задач: 51]      



Задача 64978

Темы:   [ Примеры и контрпримеры. Конструкции ]
[ Площадь треугольника (через высоту и основание) ]
[ Отношение, в котором биссектриса делит сторону ]
[ Соображения непрерывности ]
Сложность: 4
Классы: 9,10,11

Из высот треугольника можно составить треугольник. Верно ли, что из его биссектрис также можно составить треугольник?

Прислать комментарий     Решение

Задача 116394

Темы:   [ Многоугольники (прочее) ]
[ Кривые второго порядка ]
[ Примеры и контрпримеры. Конструкции ]
[ Соображения непрерывности ]
[ Общие четырехугольники ]
[ Доказательство от противного ]
[ Против большей стороны лежит больший угол ]
Сложность: 4
Классы: 10,11

Существует ли выпуклый N-угольник, все стороны которого равны, а все вершины лежат на параболе  y = x²,  если
  а)  N = 2011;
  б)  N = 2012?

Прислать комментарий     Решение

Задача 116774

Темы:   [ Пирамида (прочее) ]
[ Свойства разверток ]
[ Касательные к сферам ]
[ Соображения непрерывности ]
[ Неравенства с трехгранными углами ]
[ Доказательство от противного ]
Сложность: 4+
Классы: 10,11

Автор: Пак И.

Дана пирамида SA1A2...An, основание которой – выпуклый многоугольник A1A2...An. Для каждого  i = 1, 2, ..., n  в плоскости основания построили треугольник XiAiAi+1, равный треугольнику SAiAi+1 и лежащий по ту же сторону от прямой AiAi+1, что и основание (мы полагаем  An+1 = A1).  Докажите, что построенные треугольники покрывают всё основание.

Прислать комментарий     Решение

Задача 64749

Темы:   [ Вписанные и описанные окружности ]
[ Построение треугольников по различным точкам ]
[ Вспомогательные подобные треугольники ]
[ Соображения непрерывности ]
[ Доказательство от противного ]
[ Теоремы Чевы и Менелая ]
Сложность: 5-
Классы: 10,11

Автор: Белухов Н.

Вокруг треугольника ABC описали окружность k. На сторонах треугольника отметили три точки A1, B1 и C1, после чего сам треугольник стёрли. Докажите, что его можно однозначно восстановить тогда и только тогда, когда прямые AA1, BB1 и CC1 пересекаются в одной точке.

Прислать комментарий     Решение

Задача 35575

Темы:   [ Теорема о промежуточном значении. Связность ]
[ Выпуклые многоугольники ]
[ Поворот помогает решить задачу ]
[ Соображения непрерывности ]
Сложность: 5
Классы: 9,10,11

Дана выпуклая фигура и точка A внутри нее. Докажите, что найдется хорда (т.е. отрезок, соединяющий две граничные точки выпуклой фигуры), проходящая через точку A и делящаяся точкой A пополам.
Прислать комментарий     Решение


Страница: << 5 6 7 8 9 10 11 >> [Всего задач: 51]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .