ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Выбрано 6 задач
Версия для печати
Убрать все задачи

Диагонали трапеции равны 6 и 8, а средняя линия равна 5. Найдите площадь трапеции.

Вниз   Решение


Даны двадцать карточек. Каждая из цифр от нуля до девяти включительно написана на двух из этих карточек (на каждой карточке – только одна цифра). Можно ли расположить эти карточки в ряд так, чтобы нули стояли рядом, между единицами лежала ровно одна карточка, между двойками – две, и так далее до девяток, между которыми должно быть девять карточек?

ВверхВниз   Решение


Верно ли, что любые 100 карточек, на которых написано по одной цифре 1, 2 или 3, встречающейся не более чем по 50 раз каждая, можно разложить в один ряд так, чтобы в нём не было фрагментов 11, 22, 33, 123 и 321?

ВверхВниз   Решение


В остроугольном неравностороннем треугольнике отметили четыре точки: центры вписанной и описанной окружностей, точку пересечения медиан и ортоцентр. Затем сам треугольник стерли. Оказалось, что невозможно установить, какому центру соответствует каждая из отмеченных точек. Найдите углы треугольника.

ВверхВниз   Решение


Пусть  α = (α1, ..., αn)  и  β = (β1, ..., βn)  – два набора показателей с равной суммой.
Докажите, что, если  α ≠ β,  то при всех неотрицательных  x1, ..., xn  выполняется неравенство  Tα(x1, ..., xn) ≥ Tβ(x1, ..., xn).
Определение многочленов Tα смотри в задаче 61417, определение сравнения для показателей можно найти в справочнике.

ВверхВниз   Решение


На боковых рёбрах PA , PB , PC (или на их продолжениях) треугольной пирамиды PABC взяты точки M , N , K соответственно. Докажите, что отношение объёмов пирамид PMNK и PABC равно

· · .

Вверх   Решение

Задачи

Страница: << 107 108 109 110 111 112 113 >> [Всего задач: 2404]      



Задача 87003

Темы:   [ Свойства сечений ]
[ Линейные зависимости векторов ]
Сложность: 3
Классы: 8,9

Через вершину правильной четырёхугольной пирамиды и середины двух соседних сторон основания проведена плоскость. Найдите площадь полученного сечения, если сторона основания пирамиды равна a , а боковое ребро равно 2a .
Прислать комментарий     Решение


Задача 87005

Темы:   [ Свойства сечений ]
[ Линейные зависимости векторов ]
Сложность: 3
Классы: 8,9

Сторона основания правильной треугольной пирамиды равна a , боковое ребро равно b . Найдите площадь сечения пирамиды плоскостью, проходящей через середины двух рёбер основания и середину одного из боковых рёбер.
Прислать комментарий     Решение


Задача 87006

Темы:   [ Свойства сечений ]
[ Cкрещивающиеся прямые, угол между ними ]
Сложность: 3
Классы: 8,9

Угол между противоположными рёбрами AB и CD пирамиды ABCD равен α , AB = a , CD = b . Найдите площадь сечения пирамиды плоскостью, проходящей через середину ребра BC параллельно прямым AB и CD .
Прислать комментарий     Решение


Задача 87015

Темы:   [ Свойства сечений ]
[ Линейные зависимости векторов ]
Сложность: 3
Классы: 8,9

Сторона основания ABCD правильной четырёхугольной пирамиды SABCD равна a , боковое ребро равно b . Найдите площадь сечения пирамиды плоскостью, проходящей через середину ребра AB параллельно прямым BD и AS .
Прислать комментарий     Решение


Задача 87016

Темы:   [ Свойства сечений ]
[ Тетраэдр и пирамида ]
Сложность: 3
Классы: 8,9

Основание четырёхугольной пирамиды SABCD – параллелограмм ABCD . 1) Постройте сечение пирамиды плоскостью, проходящей через середину ребра AB параллельно плоскости SAD . 2) Найдите площадь полученного сечения, если площадь грани SAD равна 16.
Прислать комментарий     Решение


Страница: << 107 108 109 110 111 112 113 >> [Всего задач: 2404]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .