ЗАДАЧИ
problems.ru |
О проекте
|
Об авторах
|
Справочник
Каталог по темам | по источникам | |
|
Подтемы:
|
|||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Версия для печати
Убрать все задачи Какова наибольшая длина арифметической прогрессии из натуральных чисел a1, a2, ..., an с разностью 2, обладающей свойством: Среди 18 деталей, выставленных в ряд, какие-то три подряд стоящие весят по 99 г, а все остальные – по 100 г. Двумя взвешиваниями на весах со стрелкой определите все 99-граммовые детали.
Точки A , B , C , D , A1 , B1 , C1 , D1
лежат на сфере. Отрезки AA1 , BB1 , CC1 , DD1
пересекаются в точке S , которая делит отрезок DD1 пополам.
Известно, что DD1 = 2
Докажите, что любая прямая, не параллельная оси ординат, имеет уравнение вида y = kx + l. Число k называется угловым коэффициентом прямой. Угловой коэффициент прямой с точностью до знака равен тангенсу острого угла, который образует прямая с осью x.
Для чисел а, b и с, отличных от нуля, выполняется равенство: a²(b + c – a) = b²(c + a – b) = c²(a + b – c). Следует ли из этого, что а = b = c? Изобразите на координатной плоскости множество всех точек, координаты x и у которых удовлетворяют неравенству За круглым столом сидят 30 человек – рыцари и лжецы (рыцари всегда говорят правду, а лжецы всегда лгут). Известно, что у каждого из них за этим же столом есть ровно один друг, причём у рыцаря этот друг – лжец, а у лжеца этот друг – рыцарь (дружба всегда взаимна). На вопрос "Сидит ли рядом с вами ваш друг?" сидевшие через одного ответили "Да". Сколько из остальных могли также ответить "Да"? Ребро правильного тетраэдра ABCD равно a . На рёбрах AB и CD взяты точки E и F так, что описанная около тетраэдра сфера пересекает прямую, проходящую через E и F , в точках M и N . Найдите длину отрезка EF , если ME:EF:FN=3:12:4 . В некоторой точке круглого острова радиусом 1 км зарыт клад. На берегу острова стоит математик с прибором, который указывает направление на клад, когда расстояние до клада не превосходит 500 м. Кроме того, у математика есть карта острова, на которой он может фиксировать все свои перемещения, выполнять измерения и геометрические построения. Математик утверждает, что у него есть алгоритм, как добраться до клада, пройдя меньше 4 км. Может ли это быть правдой?
Пусть a и a1 , b и b1 , c и c1 – пары
противоположных рёбер тетраэдра; α , β и γ
соответственно – углы между ними ( α Постройте треугольник по стороне, радиусу вписанной окружности и радиусу вневписанной окружности, касающейся этой стороны. (Исследование проводить не требуется.) На поляне пасутся 150 коз. Поляна разделена изгородями на несколько участков. Ровно в полдень некоторые козы перепрыгнули на другие участки. Пастух подсчитал, что на каждом участке количество коз изменилось, причём ровно в семь раз. Не ошибся ли он? В остроугольном треугольнике проведены высоты AA1 и BB1. Докажите, что перпендикуляр, опущенный из точки касания вписанной окружности со стороной BC на прямую AC, проходит через центр вписанной окружности треугольника A1CB1.
Вписанные окружности граней SBC , SAC и SAB треугольной
пирамиды SABC попарно пересекаются и имеют радиусы На медианах треугольника как на диаметрах построены три окружности. Известно, что они попарно пересекаются. Пусть C1 – более удалённая от вершины C точка пересечения окружностей, построенных на медианах AM1 и BM2. Точки A1 и B1 определяются аналогично. Докажите, что прямые AA1, BB1 и CC1 пересекаются в одной точке.
Вписанные окружности граней SBC , SAC и SAB треугольной
пирамиды SABC попарно пересекаются и имеют радиусы Высоты тетраэдра пересекаются в одной точке (такой тетраэдр называется ортоцентрическим). Докажите, что точка пересечения медиан, точка пересечения высот и центр описанной сферы лежат на одной прямой. На левую чашу весов положили две круглых монеты, а на правую — ещё одну, так что весы оказались в равновесии. А какая из чаш перевесит, если каждую из монет заменить шаром того же радиуса? (Все шары и монеты изготовлены целиком из одного и того же материала, все монеты имеют одинаковую толщину.) В правильной четырёхугольной пирамиде SABCD ( S – вершина) SA=2AB . Перпендикуляр, опущенный из точки B на ребро SD , пересекает его в точке K . На апофеме SF грани SAB взята точка M так, что SM:SF=4:5 . Сфера с центром на прямой MK , проходит через точки B , K и пересекает прямую AB в точке P , причём BP=d . Найдите длину отрезка AB . В правильной треугольной пирамиде SABC ( S – вершина) на ребре AC взята точка L так, что LC:AC=4:5 . Медианы грани SAB пересекаются в точке K . Сфера, центр которой лежит на прямой KL , проходит через точки B , C и пересекает прямую AB в точке P так, что BP=b . Найдите объём пирамиды SABC , если известно, что радиус сферы равен b . |
Страница: << 66 67 68 69 70 71 72 >> [Всего задач: 2399]
Точки A , B , C , D , A1 , B1 , C1 , D1
лежат на сфере. Отрезки AA1 , BB1 , CC1 , DD1
пересекаются в точке S , которая делит отрезок DD1 пополам.
Известно, что DD1 = 2
Ортогональной проекцией правильного тетраэдра на
плоскость, параллельную одному из рёбер, является
четырёхугольник площади S , у которого отношение
наибольшей и наименьшей сторон равно
Высоты тетраэдра пересекаются в одной точке (такой тетраэдр называется ортоцентрическим). Докажите, что точка пересечения медиан, точка пересечения высот и центр описанной сферы лежат на одной прямой.
Пусть a и a1 , b и b1 , c и c1 – пары
противоположных рёбер тетраэдра; α , β и γ
соответственно – углы между ними ( α
В правильной треугольной пирамиде SABC ( S – вершина) на ребре AC взята точка L так, что LC:AC=4:5 . Медианы грани SAB пересекаются в точке K . Сфера, центр которой лежит на прямой KL , проходит через точки B , C и пересекает прямую AB в точке P так, что BP=b . Найдите объём пирамиды SABC , если известно, что радиус сферы равен b .
Страница: << 66 67 68 69 70 71 72 >> [Всего задач: 2399]
|
© 2004-...
МЦНМО
(о копирайте)
|
Пишите нам
|
![]() |
Проект осуществляется при поддержке