Loading [Contrib]/a11y/accessibility-menu.js
ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Выбрано 14 задач
Версия для печати
Убрать все задачи

Какова наибольшая длина арифметической прогрессии из натуральных чисел a1, a2, ..., an с разностью 2, обладающей свойством:    – простое при всех  k = 1, 2, ..., n?

Вниз   Решение


Среди 18 деталей, выставленных в ряд, какие-то три подряд стоящие весят по 99 г, а все остальные – по 100 г. Двумя взвешиваниями на весах со стрелкой определите все 99-граммовые детали.

ВверхВниз   Решение


Точки A , B , C , D , A1 , B1 , C1 , D1 лежат на сфере. Отрезки AA1 , BB1 , CC1 , DD1 пересекаются в точке S , которая делит отрезок DD1 пополам. Известно, что DD1 = 2 , отношение радиусов вписанных окружностей треугольников SB1C и SBC1 равно , отношение объёмов пирамид SABC и SA1B1C1 равно , а отношение объёмов пирамид SA1BD и SAB1D1 равно . Найдите отрезки SA , SB , SC .

ВверхВниз   Решение


Докажите, что любая прямая, не параллельная оси ординат, имеет уравнение вида y = kx + l. Число k называется угловым коэффициентом прямой. Угловой коэффициент прямой с точностью до знака равен тангенсу острого угла, который образует прямая с осью x.

ВверхВниз   Решение


Автор: Фольклор

Для чисел а, b и с, отличных от нуля, выполняется равенство:  a²(b + c – a) = b²(c + a – b) = c²(a + b – c).   Следует ли из этого, что  а = b = c?

ВверхВниз   Решение


Автор: Фольклор

Изобразите на координатной плоскости множество всех точек, координаты x и у которых удовлетворяют неравенству   .

ВверхВниз   Решение


За круглым столом сидят 30 человек – рыцари и лжецы (рыцари всегда говорят правду, а лжецы всегда лгут). Известно, что у каждого из них за этим же столом есть ровно один друг, причём у рыцаря этот друг – лжец, а у лжеца этот друг – рыцарь (дружба всегда взаимна). На вопрос "Сидит ли рядом с вами ваш друг?" сидевшие через одного ответили "Да". Сколько из остальных могли также ответить "Да"?

ВверхВниз   Решение


Ребро правильного тетраэдра ABCD равно a . На рёбрах AB и CD взяты точки E и F так, что описанная около тетраэдра сфера пересекает прямую, проходящую через E и F , в точках M и N . Найдите длину отрезка EF , если ME:EF:FN=3:12:4 .

ВверхВниз   Решение


В некоторой точке круглого острова радиусом 1 км зарыт клад. На берегу острова стоит математик с прибором, который указывает направление на клад, когда расстояние до клада не превосходит 500 м. Кроме того, у математика есть карта острова, на которой он может фиксировать все свои перемещения, выполнять измерения и геометрические построения. Математик утверждает, что у него есть алгоритм, как добраться до клада, пройдя меньше 4 км. Может ли это быть правдой?

ВверхВниз   Решение


Пусть a и a1 , b и b1 , c и c1 – пары противоположных рёбер тетраэдра; α , β и γ соответственно – углы между ними ( α 90o , β 90o и γ 90o ). Докажите, что из трёх величин aa1 cos α , bb1 cos β и cc1 cos γ одна равна сумме двух других.

ВверхВниз   Решение


Автор: Фольклор

Постройте треугольник по стороне, радиусу вписанной окружности и радиусу вневписанной окружности, касающейся этой стороны. (Исследование проводить не требуется.)

ВверхВниз   Решение


Автор: Фольклор

На поляне пасутся 150 коз. Поляна разделена изгородями на несколько участков. Ровно в полдень некоторые козы перепрыгнули на другие участки. Пастух подсчитал, что на каждом участке количество коз изменилось, причём ровно в семь раз. Не ошибся ли он?

ВверхВниз   Решение


В остроугольном треугольнике проведены высоты AA1 и BB1. Докажите, что перпендикуляр, опущенный из точки касания вписанной окружности со стороной BC на прямую AC, проходит через центр вписанной окружности треугольника A1CB1.

ВверхВниз   Решение


Вписанные окружности граней SBC , SAC и SAB треугольной пирамиды SABC попарно пересекаются и имеют радиусы , и соответственно. Точка K является точкой касания окружностей со стороной SA , причём SK=3 . Найдите длину отрезка AK , периметр и радиус вписанной окружности треугольника ABC .

Вверх   Решение

Задачи

Страница: << 64 65 66 67 68 69 70 >> [Всего задач: 2399]      



Задача 110782

Темы:   [ Свойства разверток ]
[ Прямоугольные треугольники (прочее) ]
[ Неравенства с трехгранными углами ]
[ Частные случаи тетраэдров (прочее) ]
Сложность: 4
Классы: 9,10,11

Может ли развертка тетраэдра оказаться треугольником со сторонами 3, 4 и 5 (тетраэдр можно резать только по ребрам)?
Прислать комментарий     Решение


Задача 110917

Темы:   [ Правильная пирамида ]
[ Теоремы Чевы и Менелая ]
[ Теорема косинусов ]
Сложность: 4
Классы: 8,9

В правильной треугольной пирамиде SABC ( S – вершина) точка P – середина апофемы SD , лежащей в грани SBC . На ребре AB взята точка M , причём MB:AB=2:7 . Сфера, центр которой лежит на прямой MP , проходит через точки A , C и пересекает прямую BC в точке Q так, что CQ=m . Найдите объём пирамиды SABC , если известно, что радиус сферы равен .
Прислать комментарий     Решение


Задача 110918

Темы:   [ Правильная пирамида ]
[ Теоремы Чевы и Менелая ]
[ Теорема косинусов ]
Сложность: 4
Классы: 8,9

В правильной четырёхугольной пирамиде SABCD ( S – вершина) SA=2AB . Перпендикуляр, опущенный из точки B на ребро SD , пересекает его в точке K . На апофеме SF грани SAB взята точка M так, что SM:SF=4:5 . Сфера с центром на прямой MK , проходит через точки B , K и пересекает прямую AB в точке P , причём BP=d . Найдите длину отрезка AB .
Прислать комментарий     Решение


Задача 110931

Темы:   [ Тетраэдр (прочее) ]
[ Вспомогательная площадь. Площадь помогает решить задачу ]
Сложность: 4
Классы: 8,9

Вписанные окружности граней SBC , SAC и SAB треугольной пирамиды SABC попарно пересекаются и имеют радиусы , и соответственно. Точка K является точкой касания окружностей со стороной SA , причём SK=5 . Найдите длину отрезка AK , периметр и радиус вписанной окружности треугольника ABC .
Прислать комментарий     Решение


Задача 110932

Темы:   [ Тетраэдр (прочее) ]
[ Вспомогательная площадь. Площадь помогает решить задачу ]
Сложность: 4
Классы: 8,9

Вписанные окружности граней SBC , SAC и SAB треугольной пирамиды SABC попарно пересекаются и имеют радиусы , и соответственно. Точка K является точкой касания окружностей со стороной SA , причём SK=3 . Найдите длину отрезка AK , периметр и радиус вписанной окружности треугольника ABC .
Прислать комментарий     Решение


Страница: << 64 65 66 67 68 69 70 >> [Всего задач: 2399]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .