ЗАДАЧИ
problems.ru |
О проекте
|
Об авторах
|
Справочник
Каталог по темам | по источникам | |
|
Тема:
Все темы
>>
Геометрия
>>
Планиметрия
>>
Окружности
>>
Вписанный угол
>>
Величина угла между двумя хордами и двумя секущими
|
||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Версия для печати
Убрать все задачи На окружности даны точки A, B, C, D в указанном порядке. M — середина дуги AB. Обозначим точки пересечения хорд MC и MD с хордой AB через E и K. Докажите, что KECD — вписанный четырехугольник. Решение |
Страница: 1 2 3 4 5 6 7 >> [Всего задач: 64]
Окружность разделена точками A, B, C, D так, что ⌣AB : ⌣BC : ⌣CD : ⌣DA = 2 : 3 : 5 : 6.
Проведены хорды AC и BD, пересекающиеся в точке M.
Окружность разделена точками A, B, C, D так, что ⌣AB : ⌣ BC : ⌣ CD : ⌣ DA = 3 : 2 : 13 : 7. Хорды AD и BC продолжены до пересечения в точке M.
б) Вершина угла BAC расположена внутри окружности. Докажите, что величина угла BAC равна полусумме угловых величин дуг окружности, заключенных внутри угла BAC и внутри угла, симметричного ему относительно вершины A.
Страница: 1 2 3 4 5 6 7 >> [Всего задач: 64] |
© 2004-...
МЦНМО
(о копирайте)
|
Пишите нам
|