Processing math: 100%
ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Выбрана 21 задача
Версия для печати
Убрать все задачи

а) Назовите 10 первых натуральных чисел, имеющих нечётное число делителей (в число делителей включается единица и само число).

б) Попробуйте сформулировать и доказать правило, позволяющее найти следующие такие числа.

Вниз   Решение


Два квадрата расположены так, как показано на рисунке. Докажите, что площади заштрихованных четырёхугольников равны.

ВверхВниз   Решение


Гриб называется плохим, если в нём не менее 10 червей. В лукошке 90 плохих и 10 хороших грибов. Могут ли все грибы стать хорошими после того, как некоторые черви переползут из плохих грибов в хорошие?

ВверхВниз   Решение


На урок физкультуры пришло 12 детей, все разной силы. Учитель 10 раз делил их на две команды по 6 человек, каждый раз новым способом, и проводил состязание по перетягиванию каната. Могло ли оказаться так, что все 10 раз состязание закончилось вничью (то есть суммы сил детей в командах были равны)?

ВверхВниз   Решение


Что больше:     или  

ВверхВниз   Решение


Пусть A1, B1 и C1 - основания перпендикуляров, опущенных из точки P на прямые BC, CA и AB. Треугольник A1B1C1 называют подерным (или педальным) треугольником точки P относительно треугольника ABC.
Пусть A1B1C1 — подерный треугольник точки P относительно треугольника ABC. Докажите, что  B1C1 = BC . AP/2R, где R — радиус описанной окружности треугольника ABC.

ВверхВниз   Решение


Из точки P опущены перпендикуляры PA1, PB1 и PC1 на стороны треугольника ABC. Прямая la соединяет середины отрезков PA и B1C1. Аналогично определяются прямые lb и lc. Докажите, что эти прямые пересекаются в одной точке.

ВверхВниз   Решение


Потроить треугольник по сторонам a, b и биссектрисе к стороне c lc.

ВверхВниз   Решение


Пусть a и n – натуральные числа, большие 1. Докажите, что если число  an + 1  простое, то a чётно и  n = 2k.
(Числа вида  fk = 22k + 1  называются числами Ферма.)

ВверхВниз   Решение


Можно ли провести из одной точки на плоскости пять лучей так, чтобы среди образованных ими углов было ровно четыре острых?
Рассматриваются углы не только между соседними, но и между любыми двумя лучами.

ВверхВниз   Решение


Докажите, что для любого тетраэдра его самый маленький двугранный угол (из шести) не больше чем двугранный угол правильного тетраэдра.

ВверхВниз   Решение


Плоскость разбита на части несколькими прямыми, среди которых есть непараллельные. Те части, граница которых состоит из двух лучей, закрасили. После этого проведена ещё одна прямая. Докажите, что, независимо от положения новой прямой, по обе стороны от неё найдутся закрашенные точки.

Пример расположения прямых (без последней прямой) изображен на рисунке.

ВверхВниз   Решение


Докажите, что:
а)  ma2 = (2b2 + 2c2 - a2)/4;
б)  ma2 + mb2 + mc2 = 3(a2 + b2 + c2)/4.

ВверхВниз   Решение


На графике многочлена с целыми коэффициентами отмечены две точки с целыми координатами.
Докажите, что если расстояние между ними – целое число, то соединяющий их отрезок параллелен оси абсцисс.

ВверхВниз   Решение


Сфера с центром в точке O проходит через вершины K , L и M треугольной пирамиды KLMN и пересекает рёбра KN , LN и MN в точках A , B , C соответственно. Известно, что NL = 14 , KN = 16 и MN:KL = 2:3 . Проекциями точки O на плоскости KLN , LMN и KMN являются середины рёбер KL , LM и KM соответственно. Расстояние между серединами рёбер KL и MN равно . Найдите периметр треугольника ABC .

ВверхВниз   Решение


В треугольнике ABC точки М и N – середины сторон АС и АВ соответственно. На медиане ВМ выбрана точка Р, не лежащая на CN. Оказалось, что
PC = 2PN.  Докажите, что  АР = ВС.

ВверхВниз   Решение


Автор: Рябов П.

Две окружности пересекаются в точках P и R. Через точку P проведены прямые l1, l2. Прямая l1 вторично пересекает окружности в точках A1 и B1. Касательные в этих точках к описанной окружности треугольника A1RB1 пересекаются в точке C1. Прямая C1R пересекает A1B1 в точке D1. Аналогично определены точки A2, B2, C2, D2. Докажите, что окружности D1D2P и C1C2R касаются.

ВверхВниз   Решение


Автор: Мухин Д.Г.

Пусть C – одна из точек пересечения окружностей α и β. Касательная в этой точке к α пересекает β в точке B, а касательная в C к β пересекает α в точке A, причём A и B отличны от C, и угол ACB тупой. Прямая AB вторично пересекает α и β в точках N и M соответственно. Докажите, что  2MN < AB.

ВверхВниз   Решение


В выпуклом 12-угольнике все углы равны. Известно, что длины каких-то десяти его сторон равны 1, а длина ещё одной равна 2. Чему может быть равна площадь этого 12- угольника?

ВверхВниз   Решение


Криволинейный многоугольник – это многоугольник, стороны которого – дуги окружностей. Существуют ли такой криволинейный многоугольник P и такая точка A на его границе, что каждая прямая, проходящая через точку A, делит периметр многоугольника P на два куска равной длины?

ВверхВниз   Решение


На стороне AB треугольника ABC отметили точки K и L так, что  KL = BC  и  AK = LB.
Докажите, что отрезок KL виден из середины M стороны AC под прямым углом.

Вверх   Решение

Задачи

Страница: << 90 91 92 93 94 95 96 >> [Всего задач: 1282]      



Задача 64875

Темы:   [ Пересекающиеся окружности ]
[ Угол между касательной и хордой ]
[ Теорема синусов ]
Сложность: 3+
Классы: 9,10,11

Окружности ω1 и ω2 пересекаются в точках A и B. Точки K1 и K2 на ω1 и ω2 соответственно таковы, что K1A касается ω2, а K2A касается ω1. Описанная окружность треугольника K1BK2 пересекает вторично прямые AK1 и AK2 в точках L1 и L2 соответственно. Докажите, что точки L1 и L2 равноудалены от прямой AB.

Прислать комментарий     Решение

Задача 64919

Темы:   [ Прямоугольники и квадраты. Признаки и свойства ]
[ Углы, опирающиеся на равные дуги и равные хорды ]
[ Вспомогательные подобные треугольники ]
[ Площадь четырехугольника ]
Сложность: 3+
Классы: 9,10,11

Автор: Рожкова М.

Квадрат ABCD вписан в окружность. Точка M лежит на дуге BC, прямая AM пересекает BD в точке P, прямая DM пересекает AC в точке Q.
Докажите, что площадь четырёхугольника APQD равна половине площади квадрата.

Прислать комментарий     Решение

Задача 65005

Темы:   [ Вписанные четырехугольники (прочее) ]
[ Углы, опирающиеся на равные дуги и равные хорды ]
Сложность: 3+
Классы: 8,9

Диагонали вписанного четырёхугольника ABCD пересекаются в точке N. Описанные окружности треугольников ANB и CND повторно пересекают стороны BC и AD в точках A1, B1, C1, D1. Докажите, что четырёхугольник A1B1C1D1 вписан в окружность с центром N.

Прислать комментарий     Решение

Задача 65035

Темы:   [ Ортоцентр и ортотреугольник ]
[ Угол между касательной и хордой ]
[ Признаки и свойства равнобедренного треугольника. ]
Сложность: 3+
Классы: 8,9

Точка H – ортоцентр треугольника ABC. Касательные, проведённые к описанным окружностям треугольников CHB и AHB в точке H, пересекают прямую AC в точках A1 и C1 соответственно. Докажите, что  A1H = C1H.

Прислать комментарий     Решение

Задача 65150

Темы:   [ Средняя линия треугольника ]
[ Вписанный угол, опирающийся на диаметр ]
Сложность: 3+
Классы: 8,9

На стороне AB треугольника ABC отметили точки K и L так, что  KL = BC  и  AK = LB.
Докажите, что отрезок KL виден из середины M стороны AC под прямым углом.

Прислать комментарий     Решение

Страница: << 90 91 92 93 94 95 96 >> [Всего задач: 1282]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .