ЗАДАЧИ
problems.ru |
О проекте
|
Об авторах
|
Справочник
Каталог по темам | по источникам | |
|
Материалы по этой теме:
Подтемы:
|
||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Версия для печати
Убрать все задачи а) Назовите 10 первых натуральных чисел, имеющих нечётное число делителей (в число делителей включается единица и само число). б) Попробуйте сформулировать и доказать правило, позволяющее найти следующие такие числа. Два квадрата расположены так, как показано на рисунке. Докажите, что площади заштрихованных четырёхугольников равны. Гриб называется плохим, если в нём не менее 10 червей. В лукошке 90 плохих и 10 хороших грибов. Могут ли все грибы стать хорошими после того, как некоторые черви переползут из плохих грибов в хорошие? На урок физкультуры пришло 12 детей, все разной силы. Учитель 10 раз делил их на две команды по 6 человек, каждый раз новым способом, и проводил состязание по перетягиванию каната. Могло ли оказаться так, что все 10 раз состязание закончилось вничью (то есть суммы сил детей в командах были равны)? Что больше: Пусть A1, B1 и C1 - основания перпендикуляров, опущенных из точки P на прямые BC, CA и AB. Треугольник A1B1C1 называют подерным (или педальным) треугольником точки P относительно треугольника ABC. Из точки P опущены перпендикуляры PA1, PB1
и PC1 на стороны треугольника ABC. Прямая la соединяет
середины отрезков PA и B1C1. Аналогично определяются
прямые lb и lc. Докажите, что эти прямые пересекаются в одной
точке.
Потроить треугольник по сторонам a, b и биссектрисе к стороне c lc.
Пусть a и n – натуральные числа, большие 1. Докажите, что если число an + 1 простое, то a чётно и n = 2k. Можно ли провести из одной точки на плоскости пять лучей так, чтобы среди образованных ими углов было ровно четыре острых? Докажите, что для любого тетраэдра его самый маленький двугранный угол (из шести) не больше чем двугранный угол правильного тетраэдра. Плоскость разбита на части несколькими прямыми, среди которых есть непараллельные. Те части, граница которых состоит из двух лучей, закрасили. После этого проведена ещё одна прямая. Докажите, что, независимо от положения новой прямой, по обе стороны от неё найдутся закрашенные точки. Докажите, что:
На графике многочлена с целыми коэффициентами отмечены две точки с целыми координатами.
Сфера с центром в точке O проходит через вершины K , L и M
треугольной пирамиды KLMN и пересекает рёбра KN , LN и MN в
точках A , B , C соответственно. Известно, что NL = 14 , KN = 16
и MN:KL = 2 В треугольнике ABC точки М и N – середины сторон АС и АВ соответственно. На медиане ВМ выбрана точка Р, не лежащая на CN. Оказалось, что Две окружности пересекаются в точках P и R. Через точку P проведены прямые l1, l2. Прямая l1 вторично пересекает окружности в точках A1 и B1. Касательные в этих точках к описанной окружности треугольника A1RB1 пересекаются в точке C1. Прямая C1R пересекает A1B1 в точке D1. Аналогично определены точки A2, B2, C2, D2. Докажите, что окружности D1D2P и C1C2R касаются. Пусть C – одна из точек пересечения окружностей α и β. Касательная в этой точке к α пересекает β в точке B, а касательная в C к β пересекает α в точке A, причём A и B отличны от C, и угол ACB тупой. Прямая AB вторично пересекает α и β в точках N и M соответственно. Докажите, что 2MN < AB. В выпуклом 12-угольнике все углы равны. Известно, что длины каких-то десяти его сторон равны 1, а длина ещё одной равна 2. Чему может быть равна площадь этого 12- угольника? Криволинейный многоугольник – это многоугольник, стороны которого – дуги окружностей. Существуют ли такой криволинейный многоугольник P и такая точка A на его границе, что каждая прямая, проходящая через точку A, делит периметр многоугольника P на два куска равной длины? На стороне AB треугольника ABC отметили точки K и L так, что KL = BC и AK = LB. |
Страница: << 90 91 92 93 94 95 96 >> [Всего задач: 1282]
Окружности ω1 и ω2 пересекаются в точках A и B. Точки K1 и K2 на ω1 и ω2 соответственно таковы, что K1A касается ω2, а K2A касается ω1. Описанная окружность треугольника K1BK2 пересекает вторично прямые AK1 и AK2 в точках L1 и L2 соответственно. Докажите, что точки L1 и L2 равноудалены от прямой AB.
Квадрат ABCD вписан в окружность. Точка M лежит на дуге BC, прямая AM пересекает BD в точке P, прямая DM пересекает AC в точке Q.
Диагонали вписанного четырёхугольника ABCD пересекаются в точке N. Описанные окружности треугольников ANB и CND повторно пересекают стороны BC и AD в точках A1, B1, C1, D1. Докажите, что четырёхугольник A1B1C1D1 вписан в окружность с центром N.
Точка H – ортоцентр треугольника ABC. Касательные, проведённые к описанным окружностям треугольников CHB и AHB в точке H, пересекают прямую AC в точках A1 и C1 соответственно. Докажите, что A1H = C1H.
На стороне AB треугольника ABC отметили точки K и L так, что KL = BC и AK = LB.
Страница: << 90 91 92 93 94 95 96 >> [Всего задач: 1282]
|
© 2004-...
МЦНМО
(о копирайте)
|
Пишите нам
|
![]() |
Проект осуществляется при поддержке