Loading [Contrib]/a11y/accessibility-menu.js
ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Все авторы >> Евдокимов М.А.

Фильтр
Сложность с по   Класс с по  
Выбрано 29 задач
Версия для печати
Убрать все задачи

Дан треугольник ABC. Обозначим через M середину стороны AC, а через P – середину отрезка CM. Описанная окружность треугольника ABP пересекает сторону BC во внутренней точке Q. Докажите, что  ∠ABM = ∠MQP.

Вниз   Решение


В таблицу 2006×2006 вписаны числа 1, 2, 3, ..., 2006².
Докажите, что найдутся такие два числа в клетках с общей стороной или вершиной, что их сумма кратна 4.

ВверхВниз   Решение


На боковых сторонах AB и AC равнобедренного треугольника ABC отметили соответственно точки K и L так, что  AK = CL  и  ∠ALK + ∠LKB = 60°.
Докажите, что  KL = BC.

ВверхВниз   Решение


Плоскость разбита на выпуклые семиугольники единичного диаметра. Докажите, что любой круг радиуса 200 пересекает не менее миллиарда из них.

ВверхВниз   Решение


На сфере отмечено пять точек, никакие три из которых не лежат на большой окружности (большая окружность – это окружность, по которой пересекаются сфера и плоскость, проходящая через её центр). Две большие окружности, не проходящие через отмеченные точки, называются эквивалентными, если одну из них с помощью непрерывнвого перемещения по сфере можно перевести в другую так, что в процессе перемещения окружность не проходит через отмеченные точки.
  а) Сколько можно нарисовать окружностей, не проходящих через отмеченные точки и не эквивалентных друг другу?
  б) Та же задача для n отмеченных точек.

ВверхВниз   Решение


На стороне AB треугольника ABC отметили точки K и L так, что  KL = BC  и  AK = LB.
Докажите, что отрезок KL виден из середины M стороны AC под прямым углом.

ВверхВниз   Решение


Из одинаковых неравнобедренных прямоугольных треугольников составили прямоугольник (без дырок и наложений).
Обязательно ли какие-то два из этих треугольников расположены так, что образуют прямоугольник?

ВверхВниз   Решение


Автор: Шноль Д.Э.

В классе учатся 27 человек, но на урок физкультуры пришли не все. Учитель разбил пришедших на две равные по численности команды для игры в пионербол. При этом в первой команде была половина всех пришедших мальчиков и треть всех пришедших девочек, а во второй – половина всех пришедших девочек и четверть всех пришедших мальчиков. Остальные пришедшие ребята помогали судить. Сколько помощников могло быть у судьи?

ВверхВниз   Решение


Аня захотела вписать в каждую клетку таблицы 5×8 по одной цифре таким образом, чтобы каждая цифра встречалась ровно в четырёх рядах. (Рядами мы считаем как столбцы, так и строчки таблицы.) Докажите, что у неё ничего не получится.

ВверхВниз   Решение


Автор: Шноль Д.Э.

Компания из нескольких друзей вела переписку так, что каждое письмо получали все, кроме отправителя. Каждый написал одно и то же количество писем, в результате чего всеми вместе было получено 440 писем. Сколько человек могло быть в этой компании?

ВверхВниз   Решение


Автор: Шноль Д.Э.

В парке два года проводили озеленительные работы: спиливали старые и сажали новые деревья. Руководители проекта заявляют, что за два года средний прирост количества деревьев составляет $15\%$. Экологи говорят, что за два года количество деревьев уменьшилось на $10\%$. Может ли и то и другое быть правдой? (Если количество деревьев за год увеличилось, то прирост считается положительным, если уменьшилось – то отрицательным. Средний прирост за два года руководители вычисляют как $(a+b)/2$, где $a$ – прирост за первый год, $b$ – за второй.)

ВверхВниз   Решение


Натуральное число увеличили на 10% и снова получили натуральное число. Могла ли при этом сумма цифр уменьшиться ровно на 10%?

ВверхВниз   Решение


На какое наибольшее число равных невыпуклых многоугольников можно разрезать квадрат так, чтобы все стороны многоугольников были параллельны сторонам квадрата и никакие два из этих многоугольников не получались друг из друга параллельным переносом?

ВверхВниз   Решение


У аптекаря есть три гирьки, с помощью которых он одному покупателю отвесил 100 г йода, другому – 101 г мёда, а третьему – 102 г перекиси водорода. Гирьки он ставил всегда на одну чашу весов, а товар – на другую. Могло ли быть так, что каждая гирька легче 90 г?

ВверхВниз   Решение


Прямоугольники P и Q равновелики, но у P диагональ больше. Двумя копиями P можно накрыть Q. Докажите, что двумя копиями Q можно накрыть P.

ВверхВниз   Решение


В остроугольном треугольнике ABC  AA', BB' и CC' – высоты. Точки Ca, Cb симметричны C' относительно AA' и BB'. Аналогично определены точки Ab, Ac, Bc, Ba. Докажите, что прямые AbBa, BcCb и CaAc параллельны.

ВверхВниз   Решение


Даны две окружности, пересекающиеся в точках $P$ и $Q$. Произвольная прямая $l$, проходящая через $Q$, повторно пересекает окружности в точках $A$ и $B$. Прямые, касающиеся окружностей в точках $A$ и $B$, пересекаются в точке $C$, а биссектриса угла $CPQ$ пересекает прямую $AB$ в точке $D$. Докажите, что все точки $D$, которые можно так получить, выбирая по-разному прямую $l$, лежат на одной окружности.

ВверхВниз   Решение


Из высот остроугольного треугольника можно составить треугольник. Докажите, что из его биссектрис тоже можно составить треугольник.

ВверхВниз   Решение


Графики двух квадратных трёхчленов пересекаются в двух точках. В обеих точках касательные к графикам перпендикулярны.
Верно ли, что оси симметрии графиков совпадают?

ВверхВниз   Решение


Диагонали четырёхугольника ABCD равны и пересекаются в точке O. Серединные перпендикуляры к сторонам AB и CD пересекаются в точке P, а серединные перпендикуляры к сторонам BC и AD – в точке Q. Найдите угол POQ.

ВверхВниз   Решение


На стороне $AC$ треугольника $ABC$ взяли такую точку $D$, что угол $BDC$ равен углу $ABC$. Чему равно наименьшее возможное расстояние между центрами окружностей, описанных около треугольников $ABC$ и $ABD$, если $BC = 1$?

ВверхВниз   Решение


Какой наибольший рациональный корень может иметь уравнение вида $aх^2 + bx + c = 0$, где $a$, $b$ и $c$ – натуральные числа, не превосходящие 100?

ВверхВниз   Решение


Рассмотрим различные прямоугольники периметра 10, лежащие внутри квадрата со стороной 10. Чему равна наибольшая возможная площадь закрашенной звёздочки (см. рисунок)? Ответ округлите до двух знаков после запятой.

ВверхВниз   Решение


Пятиугольник $ABCDE$ описан около окружности. Углы при его вершинах $A$, $C$ и $E$ равны $100^\circ$. Найдите угол $ACE$.

ВверхВниз   Решение


Пусть I — центр вписанной окружности треугольника ABC, N — основание биссектрисы угла B. Касательная к описанной окружности треугольника AIN в вершине A и касательная к описанной окружности треугольника CIN в вершине C пересекаются в точке D. Докажите, что прямые AC и DI перпендикулярны.

ВверхВниз   Решение


Таня взяла список из ста чисел 1, 2, 3, . . . , 100 и вычеркнула несколько из них. Оказалось, что какие бы два числа из оставшихся Таня ни взяла в качестве $a$ и $b$, уравнение $x^2 + ax + b=0$ имеет хотя бы один действительный корень. Какое наибольшее количество чисел могло остаться не вычеркнутым?

ВверхВниз   Решение


Пусть $O$ – центр описанной окружности остроугольного треугольника $ABC$, точка $M$ – середина стороны $AC$. Прямая $BO$ пересекает высоты $AA_1$ и $CC_1$ в точках $H_a$ и $H_c$ соответственно. Описанные окружности треугольников $BH_aA$ и $BH_cC$ вторично пересекаются в точке $K$. Докажите, что $K$ лежит на прямой $BM$.

ВверхВниз   Решение


Луноход ездит по поверхности планеты, имеющей форму шара с длиной экватора 400 км. Планета считается полностью исследованной, если луноход побывал на расстоянии по поверхности не более 50 км от каждой точки поверхности и вернулся на базу (в исходную точку). Может ли луноход полностью исследовать планету, преодолев не более 600 км?

ВверхВниз   Решение


У Пети есть колода из 36 карт (4 масти по 9 карт в каждой). Он выбирает из неё половину карт (какие хочет) и отдаёт Васе, а вторую половину оставляет себе. Далее каждым ходом игроки по очереди выкладывают на стол по одной карте (по своему выбору, в открытом виде); начинает Петя. Если в ответ на ход Пети Вася смог выложить карту той же масти или того же достоинства, Вася зарабатывает
1 очко. Какое наибольшее количество очков он может гарантированно заработать?

Вверх   Решение

Все задачи автора

Страница: << 18 19 20 21 22 23 24 >> [Всего задач: 141]      



Задача 66577

Темы:   [ Треугольники (прочее) ]
[ Планиметрия (прочее) ]
Сложность: 4
Классы: 9,10,11

На стороне $AC$ треугольника $ABC$ взяли такую точку $D$, что угол $BDC$ равен углу $ABC$. Чему равно наименьшее возможное расстояние между центрами окружностей, описанных около треугольников $ABC$ и $ABD$, если $BC = 1$?
Прислать комментарий     Решение


Задача 66583

Темы:   [ Взвешивания ]
[ Оценка + пример ]
Сложность: 4
Классы: 8,9,10,11

В каждом из $16$ отделений коробки $4\times 4$ лежит по золотой монете. Коллекционер помнит, что какие-то две лежащие рядом монеты (соседние по стороне) весят по $9$ грамм, а остальные по $10$ грамм. За какое наименьшее число взвешиваний на весах, показывающих общий вес в граммах, можно определить эти две монеты?
Прислать комментарий     Решение


Задача 66768

Темы:   [ Cфера, вписанная в призму ]
[ Вычисление объемов ]
Сложность: 4
Классы: 10,11

Сфера единичного радиуса касается всех ребер некоторой треугольной призмы. Чему может быть равен объем этой призмы? Ответ округлите до сотых.
Прислать комментарий     Решение


Задача 66856

Темы:   [ Теория игр (прочее) ]
[ Вспомогательная раскраска (прочее) ]
[ Теория графов (прочее) ]
[ Числовые таблицы и их свойства ]
[ Оценка + пример ]
Сложность: 4
Классы: 8,9,10,11

У Пети есть колода из 36 карт (4 масти по 9 карт в каждой). Он выбирает из неё половину карт (какие хочет) и отдаёт Васе, а вторую половину оставляет себе. Далее каждым ходом игроки по очереди выкладывают на стол по одной карте (по своему выбору, в открытом виде); начинает Петя. Если в ответ на ход Пети Вася смог выложить карту той же масти или того же достоинства, Вася зарабатывает
1 очко. Какое наибольшее количество очков он может гарантированно заработать?

Прислать комментарий     Решение

Задача 66860

Темы:   [ Сечения, развертки и остовы (прочее) ]
[ Примеры и контрпримеры. Конструкции ]
[ Тетраэдр (прочее) ]
Сложность: 4
Классы: 8,9,10,11

Может ли в сечении какого-то тетраэдра двумя разными плоскостями получиться два квадрата: один – со стороной, не большей 1, а другой – со стороной, не меньшей 100?

Прислать комментарий     Решение

Страница: << 18 19 20 21 22 23 24 >> [Всего задач: 141]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .