ЗАДАЧИ
problems.ru |
О проекте
|
Об авторах
|
Справочник
Каталог по темам | по источникам | |
|
Главы:
|
||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Версия для печати
Убрать все задачи Докажите, что площадь треугольника, стороны которого
равны медианам треугольника площади S, равна 3S/4.
Решите уравнение a² + b² + c² + d² – ab – bc – cd – d + 2/5 = 0. Два автобуса ехали навстречу друг другу с постоянными скоростями. Первый выехал из Москвы в 11 часов утра и прибыл в Ярославль в 16 часов, а второй выехал из Ярославля в 12 часов и прибыл в Москву в 17 часов. В котором часу они встретились? В треугольнике ABC точки М и N – середины сторон АС и АВ соответственно. На медиане ВМ выбрана точка Р, не лежащая на CN. Оказалось, что а) Докажите, что производящая функция последовательности чисел Фибоначчи
F(x) = F0 + F1x + F2x² + ... + Fnxn + ... может быть записана в виде б) Пользуясь результатом задачи 61490, получите формулу Бине (см. задачу 60578.
Вычислите производящие функции следующих
последовательностей:
Докажите, что степень точки P относительно
окружности S равна d2 - R2, где R — радиус S, d — расстояние от
точки P до центра S.
Функции a, b и c заданы рядами Четырехугольник ABCD без равных и без параллельных сторон описан около окружности с центром I. Точки K, L, M и N – середины сторон AB, BC, CD и DA. Известно, что AB⋅CD=4IK⋅IM. Докажите, что BC⋅AD=4IL⋅IN. Через некоторую точку, взятую внутри треугольника, проведены три прямые, параллельные сторонам. Эти прямые разбивают треугольник на шесть частей, три из которых – треугольники с площадями S1, S2, S3. Найдите площадь S данного треугольника. Лягушка прыгает по вершинам треугольника ABC, перемещаясь каждый раз в одну из соседних вершин.
Садовник, привив черенок редкого растения,
оставляет его расти два года, а затем ежегодно берет от него по
6 черенков. С каждым новым черенком он поступает аналогично.
Сколько будет растений и черенков на n-ом году роста
первоначального растения?
Найдите у чисел а) (6 + Как будет выглядеть формула n-го члена для рекуррентной последовательности k-го порядка, если Дан треугольник ABC. На сторонах AB и BC взяты точки M и N так, что MN∥AC. Точки M′ и N′ симметричны соответственно точкам M и N относительно сторон BC и AB соответственно. Пусть M′A пересекает BC в точке X, а N′C пересекает AB в точке Y. Докажите, что точки A, C, X, Y лежат на одной окружности. В треугольнике ABC O – центр описанной окружности, H – ортоцентр, M – середина AB. Прямая MH пересекает прямую, проходящую через O и параллельную AB, в точке K, лежащей на описанной окружности треугольника. Точка P – проекция K на AC. Докажите, что PH∥BC.
Докажите, что при всех натуральных n
выполняется сравнение
[(1 + На рисунке изображен график функции y = (a² – 1)(x² – 1) + (a – 1)(x – 1). Найдите координаты точки А. Докажите, что для точки P, лежащей вне окружности S,
ее степень относительно S равна квадрату длины касательной,
проведенной из этой точки.
Докажите неравенство Коши для пяти чисел, то есть докажите, что при a, b, c , d e ≥ 0 имеет место неравенство
а) Докажите, что площадь четырехугольника, образованного серединами
сторон выпуклого четырехугольника ABCD, равна половине площади ABCD.
|
Страница: << 6 7 8 9 10 11 12 >> [Всего задач: 1956]
Через некоторую точку, взятую внутри треугольника, проведены три прямые, параллельные сторонам. Эти прямые разбивают треугольник на шесть частей, три из которых – треугольники с площадями S1, S2, S3. Найдите площадь S данного треугольника.
Докажите, что площадь треугольника, стороны которого
равны медианам треугольника площади S, равна 3S/4.
а) Докажите, что площадь четырехугольника, образованного серединами
сторон выпуклого четырехугольника ABCD, равна половине площади ABCD.
Точка O, лежащая внутри выпуклого четырёхугольника площади S, отражается симметрично относительно середин его сторон.
Сторона AD прямоугольника ABCD в три раза больше стороны AB. Точки M и N делят AD на три равные части. Найдите ∠AMB + ∠ANB + ∠ADB.
Страница: << 6 7 8 9 10 11 12 >> [Всего задач: 1956]
|
© 2004-...
МЦНМО
(о копирайте)
|
Пишите нам
|
![]() |
Проект осуществляется при поддержке