ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Выбрана 1 задача
Версия для печати
Убрать все задачи

В равнобедренном треугольнике ABC боковые стороны AB и BC равны a . Окружность проходит через точку A , касается стороны BC в точке B и пересекает основание AC в точке D . Найдите радиус этой окружности, если = k .

   Решение

Задачи

Страница: << 56 57 58 59 60 61 62 >> [Всего задач: 1275]      



Задача 111437

Темы:   [ Угол между касательной и хордой ]
[ Теорема синусов ]
Сложность: 4
Классы: 8,9

В равнобедренном треугольнике ABC боковые стороны AB и BC равны a . Окружность проходит через точку A , касается стороны BC в точке B и пересекает основание AC в точке D . Найдите радиус этой окружности, если = k .
Прислать комментарий     Решение


Задача 111622

Темы:   [ Углы, опирающиеся на равные дуги и равные хорды ]
[ Вспомогательные равные треугольники ]
[ Углы между биссектрисами ]
[ Вспомогательная окружность ]
Сложность: 4
Классы: 8,9

Биссектрисы BB1 и CC1 треугольника ABC пересекаются в точке I. Прямая B1C1 пересекает описанную окружность треугольника ABC в точках M и N. Докажите, что радиус описанной окружности треугольника MIN вдвое больше радиуса описанной окружности треугольника ABC.

Прислать комментарий     Решение

Задача 111626

Темы:   [ Углы, опирающиеся на равные дуги и равные хорды ]
[ Вписанные и описанные многоугольники ]
Сложность: 4
Классы: 8,9

Семиугольник, три угла которого равны по 120o , вписан в окружность. Могут ли все его стороны быть различными по длине?
Прислать комментарий     Решение


Задача 111678

Темы:   [ Угол между касательной и хордой ]
[ Пятиугольники ]
[ Сумма внутренних и внешних углов многоугольника ]
Сложность: 4
Классы: 8,9

Диагонали AC и BE правильного пятиугольника ABCDE пересекаются в точке K . Докажите, что описанная окружность треугольника CKE касается прямой BC .
Прислать комментарий     Решение


Задача 115277

Темы:   [ Углы, опирающиеся на равные дуги и равные хорды ]
[ Равнобедренные, вписанные и описанные трапеции ]
Сложность: 4
Классы: 8,9

В трапеции ABCD известно, что AB=BC=CD . Диагонали трапеции пересекаются в точке O . Окружность, описанная около треугольника ABO , пересекает основание AD в точке E . Докажите, что BEDC — ромб.
Прислать комментарий     Решение


Страница: << 56 57 58 59 60 61 62 >> [Всего задач: 1275]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .