Loading [Contrib]/a11y/accessibility-menu.js
ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Годы:
Фильтр
Сложность с по   Класс с по  
Выбрано 19 задач
Версия для печати
Убрать все задачи

Докажите следующие формулы:

an+1bn+1 = (a – b)(an + an–1b + ... + bn);

a2n+1 + b2n+1 = (a + b)(a2na2n–1b + a2n–2b2 – ... + b2n).

Вниз   Решение


Натуральные числа x, y, z таковы, что  x² + y² = z².  Докажите, что хотя бы одно из этих чисел делится на 3.

ВверхВниз   Решение


Докажите, что при центральной симметрии окружность переходит в окружность.

ВверхВниз   Решение


Из пункта A в пункт B выехал велосипедист. Одновременно из пункта B в пункт A навстречу велосипедисту вышел пешеход. После их встречи велосипедист повернул обратно, а пешеход продолжил свой путь. Известно, что велосипедист вернулся в пункт A на 30 минут раньше пешехода, при этом его скорость была в 5 раз больше скорости пешехода. Сколько времени затратил пешеход на путь из A в B?

ВверхВниз   Решение


Стороны BA, AC и CB равностороннего треугольника продолжены соответственно за точки A, C и B, на продолжениях отложены равные отрезки AD, CE и BF. Докажите, что треугольник DEF – равносторонний.

ВверхВниз   Решение


a и b – натуральные числа, причём число  a² + b²  делится на 21. Докажите, что оно делится и на 441.

ВверхВниз   Решение


Прямая, проходящая через центры двух окружностей называется их линией центров.
Докажите, что общие внешние (внутренние) касательные к двум окружностям пересекаются на линии центров этих окружностей.

ВверхВниз   Решение


Сколько существует пар натуральных чисел, у которых наименьшее общее кратное (НОК) равно 2000?

ВверхВниз   Решение


Окружность радиуса R, построенная на большем основании AD трапеции ABCD как на диаметре, касается меньшего основания BC в точке C, а боковой стороны AB — в точке A. Найдите диагонали трапеции.

ВверхВниз   Решение


В забеге шести спортсменов Андрей отстал от Бориса и между ними финишировали два спортсмена. Виктор финишировал после Дмитрия, но ранее Геннадия. Дмитрий опередил Бориса, но все же пришел после Евгения. Какое место занял каждый спортсмен?

ВверхВниз   Решение


a, b, c – целые числа, причём  a + b + c  делится на 6. Докажите, что  a³ + b³ + c³  тоже делится на 6.

ВверхВниз   Решение


В клетчатом квадрате со стороной 2018 часть клеток покрашены в белый цвет, остальные — в чёрный. Известно, что из этого квадрата можно вырезать квадрат $10\times 10$, все клетки которого белые, и квадрат $10\times 10$, все клетки которого чёрные. При каком наименьшем $d$ можно гарантировать, что из него можно вырезать квадрат $10\times 10$, в котором количество чёрных и белых клеток отличается не больше чем на $d$?

ВверхВниз   Решение


Жук ползёт по рёбрам куба. Сможет ли он последовательно обойти все рёбра, проходя по каждому ребру ровно один раз?

ВверхВниз   Решение


Точка $O$ — центр описанной окружности треугольника $ABC$, $AH$ — его высота. Точка $P$ — основание перпендикуляра, опущенного из точки $A$ на прямую $CO$. Докажите, что прямая $HP$ проходит через середину отрезка $AB$.

ВверхВниз   Решение


Окружность, вписанная в треугольник ABC касается его сторон AB и AC соответственно в точках M и N. Докажите, что  BN > MN.

ВверхВниз   Решение


С помощью циркуля и линейки постройте треугольник по углу, высоте и биссектрисе, проведённым из вершины этого угла.

ВверхВниз   Решение


Верно ли следующее утверждение: "Если четырёхугольник имеет ось симметрии, то это либо равнобедренная трапеция, либо прямоугольник, либо ромб"?

ВверхВниз   Решение


Каково минимальное целое число вида 111...11, делящееся на 333...33 (100 троек)?

ВверхВниз   Решение


Решите уравнение $$ x^3+(\log_25+\log_32+\log_53) x=(\log_23+\log_35+\log_52) x^2+1. $$

Вверх   Решение

Задачи

Страница: << 26 27 28 29 30 31 32 >> [Всего задач: 1957]      



Задача 66490

Темы:   [ Задачи-шутки ]
[ Кубические многочлены ]
Сложность: 3
Классы: 8,9,10,11

Решите уравнение $$ x^3+(\log_25+\log_32+\log_53) x=(\log_23+\log_35+\log_52) x^2+1. $$
Прислать комментарий     Решение


Задача 66529

Тема:   [ Примеры и контрпримеры. Конструкции ]
Сложность: 3
Классы: 7,8,9

Все таверны в царстве принадлежат трем фирмам. В целях борьбы с монополиями царь Горох издал следующий указ: каждый день, если у некоторой фирмы оказывается более половины всех таверн и число её таверн делится на 5, то у этой фирмы остается только пятая часть её таверн, а остальные закрываются. Могло ли так случиться, что через три дня у всех фирм стало меньше таверн? (Новые таверны в это время открываться не могут.)
Прислать комментарий     Решение


Задача 66536

Темы:   [ Вписанные и описанные окружности ]
[ Треугольники (прочее) ]
[ Планиметрия (прочее) ]
Сложность: 3
Классы: 7,8,9,10,11

В остроугольном треугольнике ABC проведены высоты AA' и BB'. Точка O – центр окружности, описанной около треугольника ABC. Докажите, что расстояние от точки A' до прямой B' равно расстоянию от точки B' до прямой A'.
Прислать комментарий     Решение


Задача 66550

Тема:   [ Задачи-шутки ]
Сложность: 3
Классы: 6,7,8

Том написал на заборе из досок слово ММО, а Гек — число 2020. Ширина каждой буквы и цифры 9 см, а ширина доски забора — 5 см. Мог ли Гек испачкать меньше досок, чем Том? (Доски расположены вертикально, а слова и числа пишутся горизонтально. Цифры и буквы пишутся через равные промежутки.)
Прислать комментарий     Решение


Задача 66551

Темы:   [ Дроби (прочее) ]
[ Вычисление площадей ]
[ Площадь фигуры равна сумме площадей фигур, на которые она разбита ]
[ Суммы числовых последовательностей и ряды разностей ]
Сложность: 3
Классы: 8

Автор: Мухин Д.Г.

На графике функции $y=1/x$ Миша отмечал подряд все точки с абсциссами 1, 2, 3, ..., пока не устал. Потом пришла Маша и закрасила все прямоугольники, одна из вершин которых — это отмеченная точка, еще одна — начало координат, а еще две лежат на осях (на рисунке показано, какой прямоугольник Маша закрасила бы для отмеченной точки $P$). Затем учительница попросила ребят посчитать площадь фигуры, состоящей из всех точек, закрашенных ровно один раз. Сколько получилось?

Прислать комментарий     Решение


Страница: << 26 27 28 29 30 31 32 >> [Всего задач: 1957]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .